Advertisement

Journal of High Energy Physics

, 2019:40 | Cite as

Double copy for massive quantum particles with spin

  • Henrik Johansson
  • Alexander OchirovEmail author
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

The duality between color and kinematics was originally observed for purely adjoint massless gauge theories, and later found to hold even after introducing massive fermionic and scalar matter in arbitrary gauge-group representations. Such a generalization was critical for obtaining both loop amplitudes in pure Einstein gravity and realistic gravitational matter from the double copy. In this paper we elaborate on the double copy that yields amplitudes in gravitational theories coupled to flavored massive matter with spin, which is relevant to the problems of black-hole scattering and gravitational waves. Our construction benefits from making the little group explicit for the massive particles, as shown on lower-point examples. For concreteness, we focus on the double copy of QCD with massive quarks, for which we work out the gravitational Lagrangian up to quartic scalar and vector-scalar couplings. We find new gauge-invariant double-copy formulae for tree-level amplitudes with two distinct-flavor pairs of matter and any number of gravitons. These are similar to, but inherently different from, the well-known Kawai-Lewellen-Tye formulae, since the latter only hold for the double copy of purely adjoint gauge theories.

Keywords

Scattering Amplitudes Duality in Gauge Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11223_MOESM1_ESM.tgz (29 kb)
ESM 1 (TGZ 29 kb)

References

  1. [1]
    LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  2. [2]
    LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
  3. [3]
    D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].
  4. [4]
    V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D 91 (2015) 024017 [arXiv:1410.5348] [INSPIRE].
  5. [5]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett. 121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
  6. [6]
    C. Cheung, I.Z. Rothstein and M.P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett. 121 (2018) 251101 [arXiv:1808.02489] [INSPIRE].
  7. [7]
    D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables and Classical Scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    A. Guevara, A. Ochirov and J. Vines, Scattering of Spinning Black Holes from Exponentiated Soft Factors, arXiv:1812.06895 [INSPIRE].
  9. [9]
    Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order, Phys. Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Brandhuber and G. Travaglini, On higher-derivative effects on the gravitational potential and particle bending, arXiv:1905.05657 [INSPIRE].
  11. [11]
    A. Cristofoli, N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, On Post-Minkowskian Hamiltonians in General Relativity, arXiv:1906.01579 [INSPIRE].
  12. [12]
    B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles and black holes, arXiv:1906.09260 [INSPIRE].
  13. [13]
    A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions from minimal-coupling amplitudes, arXiv:1906.10071 [INSPIRE].
  14. [14]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].
  15. [15]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  16. [16]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].
  18. [18]
    S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE].
  19. [19]
    Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops, Phys. Rev. D 92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].
  20. [20]
    H. Johansson and A. Ochirov, Pure Gravities via Color-Kinematics Duality for Fundamental Matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].
  21. [21]
    H. Johansson and A. Ochirov, Color-Kinematics Duality for QCD Amplitudes, JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].
  22. [22]
    L. de la Cruz, A. Kniss and S. Weinzierl, Proof of the fundamental BCJ relations for QCD amplitudes, JHEP 09 (2015) 197 [arXiv:1508.01432] [INSPIRE].
  23. [23]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously Broken Yang-Mills-Einstein Supergravities as Double Copies, JHEP 06 (2017) 064 [arXiv:1511.01740] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 Supergravity Amplitudes from Gauge Theory at One Loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].
  25. [25]
    C. Boucher-Veronneau and L.J. Dixon, N ≥ 4 Supergravity Amplitudes from Gauge Theory at Two Loops, JHEP 12 (2011) 046 [arXiv:1110.1132] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying Multiloop Integrands and Ultraviolet Divergences of Gauge Theory and Gravity Amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].
  27. [27]
    Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of Three-Loop Four-Point Divergences in N = 4 Supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].
  28. [28]
    H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP 09 (2017) 019 [arXiv:1706.09381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit Formulae for Yang-Mills-Einstein Amplitudes from the Double Copy, JHEP 07 (2017) 002 [arXiv:1703.00421] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    M. Chiodaroli, Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities, in Space-Time-Matter: Analytic and Geometric Structures, J. Brüning and M. Staudacher eds., De Gruyter, Berlin, Boston, pp. 266–287 (2018) [DOI:10.1515/9783110452150-011] [arXiv:1607.04129] [INSPIRE].
  32. [32]
    N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance, Phys. Rev. Lett. 120 (2018) 231602 [arXiv:1612.02797] [INSPIRE].
  33. [33]
    A. Anastasiou, L. Borsten, M.J. Duff, S. Nagy and M. Zoccali, Gravity as Gauge Theory Squared: A Ghost Story, Phys. Rev. Lett. 121 (2018) 211601 [arXiv:1807.02486] [INSPIRE].
  34. [34]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Complete construction of magical, symmetric and homogeneous N = 2 supergravities as double copies of gauge theories, Phys. Rev. Lett. 117 (2016) 011603 [arXiv:1512.09130] [INSPIRE].
  35. [35]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction, Phys. Rev. Lett. 120 (2018) 171601 [arXiv:1710.08796] [INSPIRE].
  36. [36]
    J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled \( \mathcal{N} \) ≤ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    M. Ben-Shahar and M. Chiodaroli, One-loop amplitudes for \( \mathcal{N} \) = 2 homogeneous supergravities, JHEP 03 (2019) 153 [arXiv:1812.00402] [INSPIRE].ADSzbMATHGoogle Scholar
  38. [38]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in \( \mathcal{N} \) = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].ADSzbMATHGoogle Scholar
  39. [39]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Plane wave backgrounds and colour-kinematics duality, JHEP 02 (2019) 198 [arXiv:1810.05115] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    J.A. Farrow, A.E. Lipstein and P. McFadden, Double copy structure of CFT correlators, JHEP 02 (2019) 130 [arXiv:1812.11129] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for Taub-NUT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].
  43. [43]
    A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. O’Connell, N. Westerberg et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069 [arXiv:1611.07508] [INSPIRE].
  44. [44]
    A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double Copy, Class. Quant. Grav. 36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    D.S. Berman, E. Chacón, A. Luna and C.D. White, The self-dual classical double copy and the Eguchi-Hanson instanton, JHEP 01 (2019) 107 [arXiv:1809.04063] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    K. Lee, Kerr-Schild Double Field Theory and Classical Double Copy, JHEP 10 (2018) 027 [arXiv:1807.08443] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    M. Gurses and B. Tekin, Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory, Phys. Rev. D 98 (2018) 126017 [arXiv:1810.03411] [INSPIRE].
  48. [48]
    W. Cho and K. Lee, Heterotic Kerr-Schild Double Field Theory and Classical Double Copy, JHEP 07 (2019) 030 [arXiv:1904.11650] [INSPIRE].ADSzbMATHGoogle Scholar
  49. [49]
    N. Arkani-Hamed, Y.-t. Huang and D. O’Connell, Kerr Black Holes as Elementary Particles, arXiv:1906.10100 [INSPIRE].
  50. [50]
    A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy: Bremsstrahlung and accelerating black holes, JHEP 06 (2016) 023 [arXiv:1603.05737] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].
  52. [52]
    N. Bahjat-Abbas, A. Luna and C.D. White, The Kerr-Schild double copy in curved spacetime, JHEP 12 (2017) 004 [arXiv:1710.01953] [INSPIRE].
  53. [53]
    M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  54. [54]
    A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP 03 (2018) 044 [arXiv:1711.03901] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].
  57. [57]
    C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, JHEP 11 (2018) 162 [arXiv:1806.07388] [INSPIRE].
  58. [58]
    J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev. D 99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].
  59. [59]
    M. Carrillo González, R. Penco and M. Trodden, Radiation of scalar modes and the classical double copy, JHEP 11 (2018) 065 [arXiv:1809.04611] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  60. [60]
    N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Biadjoint wires, Phys. Lett. B 788 (2019) 274 [arXiv:1810.08118] [INSPIRE].ADSzbMATHGoogle Scholar
  61. [61]
    M. Carrillo González, B. Melcher, K. Ratliff, S. Watson and C.D. White, The classical double copy in three spacetime dimensions, JHEP 07 (2019) 167 [arXiv:1904.11001] [INSPIRE].ADSzbMATHGoogle Scholar
  62. [62]
    Y.F. Bautista and A. Guevara, From Scattering Amplitudes to Classical Physics: Universality, Double Copy and Soft Theorems, arXiv:1903.12419 [INSPIRE].
  63. [63]
    J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO, arXiv:1906.05875 [INSPIRE].
  64. [64]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSzbMATHGoogle Scholar
  65. [65]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The Momentum Kernel of Gauge and Gravity Theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].
  66. [66]
    L. de la Cruz, A. Kniss and S. Weinzierl, Double Copies of Fermions as Matter that Interacts Only Gravitationally, Phys. Rev. Lett. 116 (2016) 201601 [arXiv:1601.04523] [INSPIRE].
  67. [67]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].
  68. [68]
    Y.-J. Du, B. Feng and C.-H. Fu, BCJ Relation of Color Scalar Theory and KLT Relation of Gauge Theory, JHEP 08 (2011) 129 [arXiv:1105.3503] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro and D. O’Connell, Algebras for Amplitudes, JHEP 06 (2012) 061 [arXiv:1203.0944] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  70. [70]
    N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet, JHEP 05 (2018) 096 [arXiv:1711.09102] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  71. [71]
    R.W. Brown and S.G. Naculich, KLT-type relations for QCD and bicolor amplitudes from color-factor symmetry, JHEP 03 (2018) 057 [arXiv:1802.01620] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  72. [72]
    C.R. Mafra, Berends-Giele recursion for double-color-ordered amplitudes, JHEP 07 (2016) 080 [arXiv:1603.09731] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  73. [73]
    M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general abelian orbifolds of N = 4 super Yang-Mills theory, JHEP 01 (2014) 152 [arXiv:1311.3600] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  74. [74]
    M.M. Anber, Self-conjugate QCD, arXiv:1906.10315 [INSPIRE].
  75. [75]
    M. Günaydin, G. Sierra and P.K. Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].
  76. [76]
    M. Günaydin, G. Sierra and P.K. Townsend, More on d = 5 Maxwell-Einstein Supergravity: Symmetric Spaces and Kinks, Class. Quant. Grav. 3 (1986) 763 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    J.F. Luciani, Coupling of O(2) Supergravity with Several Vector Multiplets, Nucl. Phys. B 132 (1978) 325 [INSPIRE].
  78. [78]
    N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, arXiv:1709.04891 [INSPIRE].
  79. [79]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Non-Abelian gauged supergravities as double copies, JHEP 06 (2019) 099 [arXiv:1812.10434] [INSPIRE].zbMATHGoogle Scholar
  80. [80]
    A. Ochirov, Helicity amplitudes for QCD with massive quarks, JHEP 04 (2018) 089 [arXiv:1802.06730] [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, The simplest massive S-matrix: from minimal coupling to Black Holes, JHEP 04 (2019) 156 [arXiv:1812.08752] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  82. [82]
    Y.M. Zinoviev, Massive supermultiplets with spin 3/2, JHEP 05 (2007) 092 [hep-th/0703118] [INSPIRE].ADSMathSciNetGoogle Scholar
  83. [83]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].
  84. [84]
    M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley (1995) [INSPIRE].
  85. [85]
    Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].ADSGoogle Scholar
  86. [86]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  87. [87]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetGoogle Scholar
  88. [88]
    S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP 07 (2005) 025 [hep-th/0504159] [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    S.D. Badger, E.W.N. Glover and V.V. Khoze, Recursion relations for gauge theory amplitudes with massive vector bosons and fermions, JHEP 01 (2006) 066 [hep-th/0507161] [INSPIRE].ADSMathSciNetGoogle Scholar
  90. [90]
    R. Britto and A. Ochirov, On-shell recursion for massive fermion currents, JHEP 01 (2013) 002 [arXiv:1210.1755] [INSPIRE].ADSGoogle Scholar
  91. [91]
    F.A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus, Nucl. Phys. B 294 (1987) 700 [INSPIRE].
  92. [92]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and Multi-Gluon Scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].
  93. [93]
    M.L. Mangano, The Color Structure of Gluon Emission, Nucl. Phys. B 309 (1988) 461 [INSPIRE].
  94. [94]
    R. Kleiss and H. Kuijf, Multi-Gluon Cross-sections and Five Jet Production at Hadron Colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSGoogle Scholar
  95. [95]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
  96. [96]
    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].
  97. [97]
    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev. D 9 (1974) 910 [INSPIRE].
  98. [98]
    Y.M. Zinoviev, Massive spin two supermultiplets, hep-th/0206209 [INSPIRE].
  99. [99]
    N.A. Ondo and A.J. Tolley, Deconstructing Supergravity: Massive Supermultiplets, JHEP 11 (2018) 082 [arXiv:1612.08752] [INSPIRE].
  100. [100]
    I.L. Buchbinder, M.V. Khabarov, T.V. Snegirev and Y.M. Zinoviev, Lagrangian formulation of the massive higher spin N = 1 supermultiplets in AdS4 space, Nucl. Phys. B 942 (2019) 1 [arXiv:1901.09637] [INSPIRE].
  101. [101]
    T. Melia, Dyck words and multiquark primitive amplitudes, Phys. Rev. D 88 (2013) 014020 [arXiv:1304.7809] [INSPIRE].
  102. [102]
    T. Melia, Getting more flavor out of one-flavor QCD, Phys. Rev. D 89 (2014) 074012 [arXiv:1312.0599] [INSPIRE].
  103. [103]
    A. Ochirov and B. Page, Multi-Quark Colour Decompositions from Unitarity, arXiv:1908.02695 [INSPIRE].
  104. [104]
    D. Vaman and Y.-P. Yao, Constraints and Generalized Gauge Transformations on Tree-Level Gluon and Graviton Amplitudes, JHEP 11 (2010) 028 [arXiv:1007.3475] [INSPIRE].
  105. [105]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string, JHEP 06 (2017) 093 [arXiv:1608.02569] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  106. [106]
    W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev. D 96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].ADSMathSciNetGoogle Scholar
  107. [107]
    J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy, Phys. Rev. D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].ADSMathSciNetGoogle Scholar
  108. [108]
    T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer, Heterotic and bosonic string amplitudes via field theory, JHEP 10 (2018) 012 [arXiv:1803.05452] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  109. [109]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  110. [110]
    O. Schlotterer and S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].
  111. [111]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, Multiple Zeta Values and Superstring Amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  112. [112]
    A. Ochirov and P. Tourkine, BCJ duality and double copy in the closed string sector, JHEP 05 (2014) 136 [arXiv:1312.1326] [INSPIRE].ADSGoogle Scholar
  113. [113]
    S. Stieberger and T.R. Taylor, Closed String Amplitudes as Single-Valued Open String Amplitudes, Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  114. [114]
    Y.-t. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  115. [115]
    Y. Geyer and R. Monteiro, Gluons and gravitons at one loop from ambitwistor strings, JHEP 03 (2018) 068 [arXiv:1711.09923] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  116. [116]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press (2007) [INSPIRE].
  117. [117]
    M. de Roo, Matter Coupling in N = 4 Supergravity, Nucl. Phys. B 255 (1985) 515 [INSPIRE].
  118. [118]
    E. Bergshoeff, I.G. Koh and E. Sezgin, Coupling of Yang-Mills to N = 4, D = 4 Supergravity, Phys. Lett. 155B (1985) 71 [INSPIRE].ADSGoogle Scholar
  119. [119]
    J.H. Schwarz, Dilaton-axion symmetry, in International Workshop on String Theory, Quantum Gravity and the Unification of Fundamental Interactions, Rome, Italy, 21-26 September 1992, pp. 503–520 (1992) [hep-th/9209125] [INSPIRE].
  120. [120]
    P.B. Pal, Dirac, Majorana and Weyl fermions, Am. J. Phys. 79 (2011) 485 [arXiv:1006.1718] [INSPIRE].
  121. [121]
    F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields, Physica 7 (1940) 449.Google Scholar
  122. [122]
    L. Rosenfeld, Sur le tenseur D’Impulsion-Energie, Acad. Roy. Belg. Memoirs de Classes de Science 18 (1940) (fasc. 6).Google Scholar
  123. [123]
    C. Cheung and G.N. Remmen, Hidden Simplicity of the Gravity Action, JHEP 09 (2017) 002 [arXiv:1705.00626] [INSPIRE].
  124. [124]
    L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, Pergamon Press, Oxford (1975) [INSPIRE].
  125. [125]
    E. Poisson and C.M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic, Cambridge University Press (2014).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.NorditaStockholm University and KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.ETH ZürichInstitut für Theoretische PhysikZürichSwitzerland

Personalised recommendations