Advertisement

Journal of High Energy Physics

, 2019:37 | Cite as

Towards quasi-transverse momentum dependent PDFs computable on the lattice

  • Markus A. EbertEmail author
  • Iain W. Stewart
  • Yong Zhao
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

Transverse momentum dependent parton distributions (TMDPDFs) which appear in factorized cross sections involve infinite Wilson lines with edges on or close to the light-cone. Since these TMDPDFs are not directly calculable with a Euclidean path integral in lattice QCD, we study the construction of quasi-TMDPDFs with finite-length spacelike Wilson lines that are amenable to such calculations. We define an infrared consistency test to determine which quasi-TMDPDF definitions are related to the TMDPDF, by carrying out a one-loop study of infrared logarithms of transverse position bT ∼ ΛQCD−1, which must agree between them. This agreement is a necessary condition for the two quantities to be related by perturbative matching. TMDPDFs necessarily involve combining a hadron matrix element, which nominally depends on a single light-cone direction, with soft matrix elements that necessarily depend on two light-cone directions. We show at one loop that the simplest definitions of the quasi hadron matrix element, the quasi soft matrix element, and the resulting quasi-TMDPDF all fail the infrared consistency test. Ratios of impact parameter quasi-TMDPDFs still provide nontrivial information about the TMD-PDFs, and are more robust since the soft matrix elements cancel. We show at one loop that such quasi ratios can be matched to ratios of the corresponding TMDPDFs. We also introduce a modified “bent” quasi soft matrix element which yields a quasi-TMDPDF that passes the consistency test with the TMDPDF at one loop, and discuss potential issues at higher orders.

Keywords

Lattice field theory simulation QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    CDF collaboration, The transverse momentum and total cross section of e + e pairs in the Z boson region from pp collisions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev. Lett. 84 (2000) 845 [hep-ex/0001021] [INSPIRE].
  2. [2]
    D0 collaboration, Differential production cross section of Z bosons as a function of transverse momentum at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev. Lett. 84 (2000) 2792 [hep-ex/9909020] [INSPIRE].
  3. [3]
    D0 collaboration, Measurement of the shape of the boson transverse momentum distribution in ppZ/γ e + e + X events produced at \( \sqrt{s} \) = 1.96-TeV, Phys. Rev. Lett. 100 (2008) 102002 [arXiv:0712.0803] [INSPIRE].
  4. [4]
    D0 collaboration, Measurement of the normalized Z/γ μ + μ transverse momentum distribution in pp collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett. B 693 (2010) 522 [arXiv:1006.0618] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ bosons in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].
  6. [6]
    CMS collaboration, Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurement of the Z/γ boson transverse momentum distribution in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
  9. [9]
    ATLAS collaboration, Measurement of the transverse momentum and \( {\phi}_{\eta}^{\ast } \) distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 02 (2017) 096 [arXiv:1606.05864] [INSPIRE].
  11. [11]
    ATLAS collaboration, Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at \( \sqrt{s} \) = 8 TeV with ATLAS, JHEP 09 (2014) 112 [arXiv:1407.4222] [INSPIRE].
  12. [12]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
  13. [13]
    ATLAS collaboration, Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to W W eνμν with the ATLAS detector at \( \sqrt{s} \) = 8 TeV, JHEP 08(2016) 104 [arXiv:1604.02997] [INSPIRE].
  14. [14]
    ATLAS collaboration, Measurement of inclusive and differential cross sections in the HZZ →4ℓ decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 132 [arXiv:1708.02810] [INSPIRE].
  15. [15]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb −1 of pp collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
  16. [16]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 76 (2016) 13 [arXiv:1508.07819] [INSPIRE].
  17. [17]
    CMS collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 04 (2016) 005 [arXiv:1512.08377] [INSPIRE].
  18. [18]
    CMS collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at \( \sqrt{s} \) = 8 TeV using HW W decays, JHEP 03 (2017) 032 [arXiv:1606.01522] [INSPIRE].
  19. [19]
    CMS collaboration, Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2019) 183 [arXiv:1807.03825] [INSPIRE].
  20. [20]
    European Muon collaboration, Forward produced hadrons in μp and μd scattering and investigation of the charge structure of the nucleon, Z. Phys. C 52 (1991) 361 [INSPIRE].
  21. [21]
    ZEUS collaboration, Inclusive charged particle distributions in deep inelastic scattering events at HERA, Z. Phys. C 70 (1996) 1 [hep-ex/9511010] [INSPIRE].
  22. [22]
    H1 collaboration, Measurement of charged particle transverse momentum spectra in deep inelastic scattering, Nucl. Phys. B 485 (1997) 3 [hep-ex/9610006] [INSPIRE].
  23. [23]
    H1 collaboration, Measurement of the proton structure function F L(x, Q 2) at low x, Phys. Lett. B 665 (2008) 139 [arXiv:0805.2809] [INSPIRE].
  24. [24]
    HERMES collaboration, Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Rev. D 87 (2013) 074029 [arXiv:1212.5407] [INSPIRE].
  25. [25]
    COMPASS collaboration, Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c, Eur. Phys. J. C 73 (2013) 2531 [Erratum ibid. C 75 (2015) 94] [arXiv:1305.7317] [INSPIRE].
  26. [26]
    COMPASS collaboration, Transverse-momentum-dependent multiplicities of charged hadrons in muon-deuteron deep inelastic scattering, Phys. Rev. D 97 (2018) 032006 [arXiv:1709.07374] [INSPIRE].
  27. [27]
    D. Boer et al., Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  28. [28]
    A. Accardi et al., Electron ion collider: the next QCD frontier, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].
  29. [29]
    F. Landry, R. Brock, G. Ladinsky and C.P. Yuan, New fits for the nonperturbative parameters in the CSS resummation formalism, Phys. Rev. D 63 (2001) 013004 [hep-ph/9905391] [INSPIRE].
  30. [30]
    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].
  31. [31]
    A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].
  32. [32]
    U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in q T spectra of Drell-Yan and Z-boson production, JHEP 11 (2014) 098 [arXiv:1407.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Bacchetta et al., Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP 06 (2017) 081 [Erratum ibid. 06 (2019) 051] [arXiv:1703.10157] [INSPIRE].
  34. [34]
    I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J. C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B.U. Musch, P. Hagler, J.W. Negele and A. Schafer, Exploring quark transverse momentum distributions with lattice QCD, Phys. Rev. D 83 (2011) 094507 [arXiv:1011.1213] [INSPIRE].
  36. [36]
    B.U. Musch et al., Sivers and Boer-Mulders observables from lattice QCD, Phys. Rev. D 85 (2012) 094510 [arXiv:1111.4249] [INSPIRE].
  37. [37]
    M. Engelhardt et al., Lattice QCD study of the Boer-Mulders effect in a pion, Phys. Rev. D 93 (2016) 054501 [arXiv:1506.07826] [INSPIRE].
  38. [38]
    B. Yoon et al., Lattice QCD calculations of nucleon transverse momentum-dependent parton distributions using clover and domain wall fermions, PoS(LATTICE 2015) 116 arXiv:1601.05717 [INSPIRE].
  39. [39]
    B. Yoon et al., Nucleon transverse momentum-dependent parton distributions in lattice QCD: renormalization patterns and discretization effects, Phys. Rev. D 96 (2017) 094508 [arXiv:1706.03406] [INSPIRE].
  40. [40]
    X. Ji, Parton physics on a Euclidean lattice, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539] [INSPIRE].
  41. [41]
    X. Ji, Parton physics from large-momentum effective field theory, Sci. China Phys. Mech. Astron. 57 (2014) 1407 [arXiv:1404.6680] [INSPIRE].
  42. [42]
    Y. Hatta, X. Ji and Y. Zhao, Gluon helicity ΔG from a universality class of operators on a lattice, Phys. Rev. D 89 (2014) 085030 [arXiv:1310.4263] [INSPIRE].
  43. [43]
    Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D 98 (2018) 074021 [arXiv:1404.6860] [INSPIRE].
  44. [44]
    Y.-Q. Ma and J.-W. Qiu, Exploring partonic structure of hadrons using ab initio lattice QCD calculations, Phys. Rev. Lett. 120 (2018) 022003 [arXiv:1709.03018] [INSPIRE].
  45. [45]
    T. Izubuchi et al., Factorization theorem relating Euclidean and light-cone parton distributions, Phys. Rev. D 98 (2018) 056004 [arXiv:1801.03917] [INSPIRE].
  46. [46]
    X. Xiong, X. Ji, J.-H. Zhang and Y. Zhao, One-loop matching for parton distributions: nonsinglet case, Phys. Rev. D 90 (2014) 014051 [arXiv:1310.7471] [INSPIRE].
  47. [47]
    Y.-Q. Ma and J.-W. Qiu, QCD factorization and PDFs from lattice QCD calculation, Int. J. Mod. Phys. Conf. Ser. 37 (2015) 1560041 [arXiv:1412.2688] [INSPIRE].
  48. [48]
    X. Ji and J.-H. Zhang, Renormalization of quasiparton distribution, Phys. Rev. D 92 (2015) 034006 [arXiv:1505.07699] [INSPIRE].
  49. [49]
    X. Ji, A. Schäfer, X. Xiong and J.-H. Zhang, One-loop matching for generalized parton distributions, Phys. Rev. D 92 (2015) 014039 [arXiv:1506.00248] [INSPIRE].
  50. [50]
    X. Xiong and J.-H. Zhang, One-loop matching for transversity generalized parton distribution, Phys. Rev. D 92 (2015) 054037 [arXiv:1509.08016] [INSPIRE].
  51. [51]
    H.N. Li, Nondipolar Wilson links for quasiparton distribution functions, Phys. Rev. D 94 (2016) 074036 [arXiv:1602.07575] [INSPIRE].
  52. [52]
    T. Ishikawa, Y.-Q. Ma, J.-W. Qiu and S. Yoshida, Practical quasi parton distribution functions, arXiv:1609.02018 [INSPIRE].
  53. [53]
    J.-W. Chen, X. Ji and J.-H. Zhang, Improved quasi parton distribution through Wilson line renormalization, Nucl. Phys. B 915 (2017) 1 [arXiv:1609.08102] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    C.E. Carlson and M. Freid, Lattice corrections to the quark quasidistribution at one-loop, Phys. Rev. D 95 (2017) 094504 [arXiv:1702.05775] [INSPIRE].
  55. [55]
    R.A. Briceño, M.T. Hansen and C.J. Monahan, Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements, Phys. Rev. D 96 (2017) 014502 [arXiv:1703.06072] [INSPIRE].
  56. [56]
    X. Xiong, T. Luu and U.-G. Meissner, Quasi-parton distribution function in lattice perturbation theory, arXiv:1705.00246 [INSPIRE].
  57. [57]
    M. Constantinou and H. Panagopoulos, Perturbative renormalization of quasi-parton distribution functions, Phys. Rev. D 96 (2017) 054506 [arXiv:1705.11193] [INSPIRE].
  58. [58]
    G.C. Rossi and M. Testa, Note on lattice regularization and equal-time correlators for parton distribution functions, Phys. Rev. D 96 (2017) 014507 [arXiv:1706.04428] [INSPIRE].
  59. [59]
    X. Ji, J.-H. Zhang and Y. Zhao, More on large-momentum effective theory approach to parton physics, Nucl. Phys. B 924 (2017) 366 [arXiv:1706.07416] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    X. Ji, J.-H. Zhang and Y. Zhao, Renormalization in large momentum effective theory of parton physics, Phys. Rev. Lett. 120 (2018) 112001 [arXiv:1706.08962] [INSPIRE].
  61. [61]
    T. Ishikawa, Y.-Q. Ma, J.-W. Qiu and S. Yoshida, Renormalizability of quasiparton distribution functions, Phys. Rev. D 96 (2017) 094019 [arXiv:1707.03107] [INSPIRE].
  62. [62]
    J. Green, K. Jansen and F. Steffens, Nonperturbative renormalization of nonlocal quark bilinears for parton quasidistribution functions on the lattice using an auxiliary field, Phys. Rev. Lett. 121 (2018) 022004 [arXiv:1707.07152] [INSPIRE].
  63. [63]
    W. Wang, S. Zhao and R. Zhu, Gluon quasidistribution function at one loop, Eur. Phys. J. C 78 (2018) 147 [arXiv:1708.02458] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.-W. Chen et al., Symmetry properties of nonlocal quark bilinear operators on a lattice, arXiv:1710.01089 [INSPIRE].
  65. [65]
    I.W. Stewart and Y. Zhao, Matching the quasiparton distribution in a momentum subtraction scheme, Phys. Rev. D 97 (2018) 054512 [arXiv:1709.04933] [INSPIRE].
  66. [66]
    W. Wang and S. Zhao, On the power divergence in quasi gluon distribution function, JHEP 05 (2018) 142 [arXiv:1712.09247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    G. Spanoudes and H. Panagopoulos, Renormalization of Wilson-line operators in the presence of nonzero quark masses, Phys. Rev. D 98 (2018) 014509 [arXiv:1805.01164] [INSPIRE].
  68. [68]
    J. Xu, Q.-A. Zhang and S. Zhao, Light-cone distribution amplitudes of vector meson in a large momentum effective theory, Phys. Rev. D 97 (2018) 114026 [arXiv:1804.01042] [INSPIRE].
  69. [69]
    G. Rossi and M. Testa, Euclidean versus Minkowski short distance, Phys. Rev. D 98 (2018) 054028 [arXiv:1806.00808] [INSPIRE].
  70. [70]
    J.-H. Zhang et al., Accessing gluon parton distributions in large momentum effective theory, Phys. Rev. Lett. 122 (2019) 142001 [arXiv:1808.10824] [INSPIRE].
  71. [71]
    Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, Multiplicative renormalizability of operators defining quasiparton distributions, Phys. Rev. Lett. 122 (2019) 062002 [arXiv:1809.01836] [INSPIRE].
  72. [72]
    Y.-S. Liu et al., Matching the meson quasidistribution amplitude in the RI/MOM scheme, Phys. Rev. D 99 (2019) 094036 [arXiv:1810.10879] [INSPIRE].
  73. [73]
    J.-W. Chen et al., Nucleon helicity and transversity parton distributions from lattice QCD, Nucl. Phys. B 911 (2016) 246 [arXiv:1603.06664] [INSPIRE].
  74. [74]
    A. Radyushkin, Target mass effects in parton quasi-distributions, Phys. Lett. B 770 (2017) 514 [arXiv:1702.01726].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    V.M. Braun, A. Vladimirov and J.-H. Zhang, Power corrections and renormalons in parton quasidistributions, Phys. Rev. D 99 (2019) 014013 [arXiv:1810.00048] [INSPIRE].
  76. [76]
    H.-W. Lin, J.-W. Chen, S.D. Cohen and X. Ji, Flavor structure of the nucleon sea from lattice QCD, Phys. Rev. D 91 (2015) 054510 [arXiv:1402.1462] [INSPIRE].
  77. [77]
    C. Alexandrou et al., Lattice calculation of parton distributions, Phys. Rev. D 92 (2015) 014502 [arXiv:1504.07455] [INSPIRE].
  78. [78]
    C. Alexandrou et al., Updated lattice results for parton distributions, Phys. Rev. D 96 (2017) 014513 [arXiv:1610.03689] [INSPIRE].
  79. [79]
    J.-H. Zhang et al., Pion distribution amplitude from lattice QCD, Phys. Rev. D 95 (2017) 094514 [arXiv:1702.00008] [INSPIRE].
  80. [80]
    C. Alexandrou et al., A complete non-perturbative renormalization prescription for quasi-PDFs, Nucl. Phys. B 923 (2017) 394 [arXiv:1706.00265] [INSPIRE].
  81. [81]
    J.-W. Chen et al., Parton distribution function with nonperturbative renormalization from lattice QCD, Phys. Rev. D 97 (2018) 014505 [arXiv:1706.01295] [INSPIRE].
  82. [82]
    T. Ishikawa et al., Gaussian-weighted parton quasi-distribution (Lattice Parton Physics Project (LP 3 )), Sci. China Phys. Mech. Astron. 62 (2019) 991021 [arXiv:1711.07858] [INSPIRE].
  83. [83]
    LP3 collaboration, Kaon distribution amplitude from lattice QCD and the flavor SU(3) symmetry, Nucl. Phys. B 939 (2019) 429 [arXiv:1712.10025] [INSPIRE].
  84. [84]
    C. Alexandrou et al., Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett. 121 (2018) 112001 [arXiv:1803.02685] [INSPIRE].
  85. [85]
    J.-W. Chen et al., Lattice calculation of parton distribution function from LaMET at physical pion mass with large nucleon momentum, arXiv:1803.04393 [INSPIRE].
  86. [86]
    J.-H. Zhang et al., First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D 100 (2019) 034505 [arXiv:1804.01483] [INSPIRE].
  87. [87]
    C. Alexandrou et al., Transversity parton distribution functions from lattice QCD, Phys. Rev. D 98 (2018) 091503 [arXiv:1807.00232] [INSPIRE].
  88. [88]
    Y.-S. Liu et al., Unpolarized quark distribution from lattice QCD: a systematic analysis of renormalization and matching, arXiv:1807.06566 [INSPIRE].
  89. [89]
    H.-W. Lin et al., Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett. 121 (2018) 242003 [arXiv:1807.07431] [INSPIRE].
  90. [90]
    Z.-Y. Fan et al., Gluon quasi-parton-distribution functions from lattice QCD, Phys. Rev. Lett. 121 (2018) 242001 [arXiv:1808.02077] [INSPIRE].
  91. [91]
    Y.-S. Liu et al., Nucleon transversity distribution at the physical pion mass from lattice QCD, arXiv:1810.05043 [INSPIRE].
  92. [92]
    X. Ji, P. Sun, X. Xiong and F. Yuan, Soft factor subtraction and transverse momentum dependent parton distributions on the lattice, Phys. Rev. D 91 (2015) 074009 [arXiv:1405.7640] [INSPIRE].
  93. [93]
    X. Ji et al., Transverse momentum dependent parton quasidistributions, Phys. Rev. D 99 (2019) 114006 [arXiv:1801.05930] [INSPIRE].
  94. [94]
    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  95. [95]
    J.C. Collins and D.E. Soper, Back-to-back jets: Fourier transform from B to K-transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
  97. [97]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for short distance hadron-hadron scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].
  98. [98]
    J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].
  99. [99]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  100. [100]
    J. Collins, Foundations of perturbative QCD, Cambridge monographs on particle physics, nuclear physics, and cosmology, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  101. [101]
    M. Diehl et al., Cancellation of Glauber gluon exchange in the double Drell-Yan process, JHEP 01 (2016) 076 [arXiv:1510.08696] [INSPIRE].
  102. [102]
    S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].
  103. [103]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].
  104. [104]
    S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].
  105. [105]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX () in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  106. [106]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  107. [107]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  108. [108]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  109. [109]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    T. Becher, M. Neubert and D. Wilhelm, Electroweak gauge-boson production at small q T : infrared safety from the collinear anomaly, JHEP 02 (2012) 124 [arXiv:1109.6027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  111. [111]
    T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low q T and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    M.G. Echevarr´ıa, A. Idilbi and I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions, Phys. Lett. B 726 (2013) 795 [arXiv:1211.1947] [INSPIRE].
  114. [114]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev. D 90 (2014) 014003 [arXiv:1402.0869] [INSPIRE].
  115. [115]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  116. [116]
    J. Collins and T.C. Rogers, Connecting different TMD factorization formalisms in QCD, Phys. Rev. D 96 (2017) 054011 [arXiv:1705.07167] [INSPIRE].
  117. [117]
    I. Balitsky and A. Tarasov, Higher-twist corrections to gluon TMD factorization, JHEP 07 (2017) 095 [arXiv:1706.01415] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    I. Balitsky and A. Tarasov, Power corrections to TMD factorization for Z-boson production, JHEP 05 (2018) 150 [arXiv:1712.09389] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    M.A. Ebert et al., Subleading power rapidity divergences and power corrections for q T, JHEP 04 (2019) 123 [arXiv:1812.08189] [INSPIRE].
  120. [120]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
  121. [121]
    D.E. Soper, Partons and their transverse momenta in QCD, Phys. Rev. Lett. 43 (1979) 1847 [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    J.C. Collins and F.V. Tkachov, Breakdown of dimensional regularization in the Sudakov problem, Phys. Lett. B 294 (1992) 403 [hep-ph/9208209] [INSPIRE].
  123. [123]
    J. Collins, Rapidity divergences and valid definitions of parton densities, PoS(LC2008) 028 [arXiv:0808.2665] [INSPIRE].
  124. [124]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].
  125. [125]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  126. [126]
    A.V. Manohar and I.W. Stewart, The Zero-Bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].
  127. [127]
    Y. Li, D. Neill and H.X. Zhu, An exponential regulator for rapidity divergences, arXiv:1604.00392 [INSPIRE].
  128. [128]
    M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].
  129. [129]
    J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].
  130. [130]
    T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    J.Y. Chiu et al., Soft-collinear factorization and zero-bin subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].
  132. [132]
    X.D. Ji and F. Yuan, Parton distributions in light cone gauge: where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].
  133. [133]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].
  134. [134]
    A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: the introduction of the new Wilson line T, Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [INSPIRE].
  135. [135]
    M. Garcia-Echevarria, A. Idilbi and I. Scimemi, SCET, light-cone gauge and the T-Wilson lines, Phys. Rev. D 84 (2011) 011502 [arXiv:1104.0686] [INSPIRE].
  136. [136]
    Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
  137. [137]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev. D 93 (2016) 011502 [Erratum ibid. D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
  138. [138]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev. D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].
  139. [139]
    J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].
  140. [140]
    S. Catani and M. Grazzini, Higgs boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE].
  141. [141]
    S. Catani et al., Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].
  142. [142]
    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].
  145. [145]
    A.A. Vladimirov, Correspondence between soft and rapidity anomalous dimensions, Phys. Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].
  146. [146]
    A. Vladimirov, Structure of rapidity divergences in multi-parton scattering soft factors, JHEP 04 (2018) 045 [arXiv:1707.07606] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  147. [147]
    M.A. Ebert and F.J. Tackmann, Resummation of transverse momentum distributions in distribution space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].
  148. [148]
    I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP 08 (2018) 003 [arXiv:1803.11089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  149. [149]
    I. Scimemi and A. Vladimirov, Power corrections and renormalons in transverse momentum distributions, JHEP 03 (2017) 002 [arXiv:1609.06047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  150. [150]
    M.A. Ebert, I.W. Stewart and Y. Zhao, Determining the nonperturbative Collins-Soper kernel from lattice QCD, Phys. Rev. D 99 (2019) 034505 [arXiv:1811.00026] [INSPIRE].
  151. [151]
    M.G.A. Buffing, M. Diehl and T. Kasemets, Transverse momentum in double parton scattering: factorisation, evolution and matching, JHEP 01 (2018) 044 [arXiv:1708.03528] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  152. [152]
    S.M. Aybat and T.C. Rogers, TMD parton distribution and fragmentation functions with QCD evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].
  153. [153]
    A. Bacchetta, D. Boer, M. Diehl and P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum, JHEP 08 (2008) 023 [arXiv:0803.0227] [INSPIRE].ADSCrossRefGoogle Scholar
  154. [154]
    H.X. Zhu, Rapidity renormalization group and transverse-momentum resummation for Higgs production at N 3 LL, XIII annual workshop on Soft-Collinear Effective Theory (SCET 2016), March 21–24, DESY, Hamburg, Germany (2016).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations