Journal of High Energy Physics

, 2019:35 | Cite as

Hilbert series and plethystics: paving the path towards 2HDM- and MLRSM-EFT

  • Anisha
  • Supratim Das Bakshi
  • Joydeep ChakraborttyEmail author
  • Suraj Prakash
Open Access
Regular Article - Theoretical Physics


Effective Field Theory (EFT) technique is one of the most elegant ways to capture the impact of high scale theory, if any, at some low energy by incorporating higher mass dimensional (5) effective operators (\( \mathcal{O} \)i). The low energy EFT is described in terms of only light degrees of freedom (DOF) which can appear on-shell. An essential task while developing the EFT framework is to compute these \( \mathcal{O} \)i’s. Hilbert Series (HS) is a novel and mathematically robust method to construct the complete set of gauge invariant independent, effective operators. The HS requires the knowledge of the transformation properties of the light DOF and the covariant derivatives under the internal gauge symmetries and conformal groups. The Hilbert Series method, by its virtue, automatically takes care of the redundancies in the operator set due to the Equations of Motion (EOMs) of fields and Integration by Parts (IBPs) with impeccable accuracy.

In this paper, we have adopted this methodology to construct the complete set of independent operators up to dimension-6 in the “Warsaw”-like basis for two different Beyond Standard Model scenarios — Two Higgs Doublet Model (2HDM) and Minimal Left-Right Symmetric Model (MLRSM). For both these cases, we have calculated the corrections to the scalar, gauge boson and fermion mass spectra due to the dimension-6 operators. The additional contributions to all the Feynman vertices are computed and their impact on different observables, namely Weak mixing angle, Fermi constant, ρ and oblique (S, T, U) parameters. We have further discussed how the magnetic moments of charged leptons and production and decay of the massive BSM particles, e.g., charged scalar and different rare processes are affected in the presence of effective operators. We have also constructed the effective scalar four-point interactions and commented on the possible reinvestigation of the theoretical constraints, e.g., unitarity and vacuum stability within these frameworks.


Effective Field Theories Gauge Symmetry Spontaneous Symmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].
  3. [3]
    D.A. Ross, Threshold effects in gauge theories, Nucl. Phys. B 140 (1978) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Weinberg, Effective gauge theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.K. Gaillard, The effective one loop Lagrangian with derivative couplings, Nucl. Phys. B 268 (1986) 669 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    O. Cheyette, Derivative expansion of the effective action, Phys. Rev. Lett. 55 (1985) 2394 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, JHEP 01 (2018) 123 [arXiv:1604.01019] [INSPIRE].
  9. [9]
    B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485,…: higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [arXiv:1512.03433] [INSPIRE].
  10. [10]
    C.-W. Chiang and R. Huo, Standard Model effective field theory: integrating out a generic scalar, JHEP 09 (2015) 152 [arXiv:1505.06334] [INSPIRE].
  11. [11]
    R. Huo, Standard Model effective field theory: integrating out vector-like fermions, JHEP 09 (2015) 037 [arXiv:1506.00840] [INSPIRE].
  12. [12]
    R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, Phys. Rev. D 97 (2018) 075013 [arXiv:1509.05942] [INSPIRE].
  13. [13]
    A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP 03 (2016) 180 [arXiv:1512.03003] [INSPIRE].
  14. [14]
    F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective Lagrangians after matching, Eur. Phys. J. C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].
  15. [15]
    J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP 09 (2016) 156 [arXiv:1607.02142] [INSPIRE].
  16. [16]
    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the universal one-loop effective action, Phys. Lett. B 762 (2016) 166 [arXiv:1604.02445] [INSPIRE].
  17. [17]
    B. Gripaios and D. Sutherland, DEFT: a program for operators in EFT, JHEP 01 (2019) 128 [arXiv:1807.07546] [INSPIRE].
  18. [18]
    A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].
  19. [19]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: the Standard Model effective field theory toolkit, Eur. Phys. J. C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].
  20. [20]
    J.C. Criado, MatchingTools: a python library for symbolic effective field theory calculations, Comput. Phys. Commun. 227 (2018) 42 [arXiv:1710.06445] [INSPIRE].
  21. [21]
    J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].
  22. [22]
    J. Aebischer, J. Kumar and D.M. Straub, Wilson: a python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].
  23. [23]
    S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J. C 79 (2019) 21 [arXiv:1808.04403] [INSPIRE].
  24. [24]
    J.C. Criado, BasisGen: automatic generation of operator bases, Eur. Phys. J. C 79 (2019) 256 [arXiv:1901.03501] [INSPIRE].
  25. [25]
    B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of general power counting rules in effective field theory, Eur. Phys. J. C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE].
  26. [26]
    J.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders, JHEP 03 (2019) 038 [arXiv:1811.09413] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Misiak, M. Paraskevas, J. Rosiek, K. Suxho and B. Zglinicki, Effective field theories in R ξ gauges, JHEP 02 (2019) 051 [arXiv:1812.11513] [INSPIRE].
  28. [28]
    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].
  29. [29]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].
  30. [30]
    J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [INSPIRE].
  31. [31]
    H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.B. Kaplan, Effective field theories, in Beyond the Standard Model 5. Proceedings, 5th Conference, Balholm, Norway, 29 April-4 May 1997 [nucl-th/9506035] [INSPIRE].
  33. [33]
    D.B. Kaplan, Five lectures on effective field theory, nucl-th/0510023 [INSPIRE].
  34. [34]
    A.V. Manohar, Effective field theories, Lect. Notes Phys. 479 (1997) 311 [hep-ph/9606222] [INSPIRE].
  35. [35]
    C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].
  37. [37]
    L. Lehman and A. Martin, Hilbert series for constructing Lagrangians: expanding the phenomenologists toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].
  38. [38]
    L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, JHEP 02 (2016) 081 [arXiv:1510.00372] [INSPIRE].
  39. [39]
    J.D. Wells and Z. Zhang, Effective theories of universal theories, JHEP 01 (2016) 123 [arXiv:1510.08462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    G. Passarino, XEFT, the challenging path up the hill: dim = 6 and dim = 8, arXiv:1901.04177 [INSPIRE].
  41. [41]
    T. Cohen, As scales become separated: lectures on effective field theory, PoS(TASI2018) 011 (2019) [arXiv:1903.03622] [INSPIRE].
  42. [42]
    Z. Zhang, Covariant diagrams for one-loop matching, JHEP 05 (2017) 152 [arXiv:1610.00710] [INSPIRE].
  43. [43]
    S. Willenbrock and C. Zhang, Effective field theory beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 64 (2014) 83 [arXiv:1401.0470] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, JHEP 09 (2013) 063 [arXiv:1305.0017] [INSPIRE].
  45. [45]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
  47. [47]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
  48. [48]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
  49. [49]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
  50. [50]
    C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D 49 (1994) 6709 [hep-ph/9306321] [INSPIRE].
  51. [51]
    A. Barzinji, M. Trott and A. Vasudevan, Equations of motion for the Standard Model effective field theory: theory and applications, Phys. Rev. D 98 (2018) 116005 [arXiv:1806.06354] [INSPIRE].
  52. [52]
    L. Lehman, Extending the Standard Model effective field theory with the complete set of dimension-7 operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].
  53. [53]
    B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys. 347 (2016) 363 [arXiv:1507.07240] [INSPIRE].
  54. [54]
    A. Kobach and S. Pal, Hilbert series and operator basis for NRQED and NRQCD/HQET, Phys. Lett. B 772 (2017) 225 [arXiv:1704.00008] [INSPIRE].
  55. [55]
    A. Trautner, Systematic construction of basis invariants in the 2HDM, JHEP 05 (2019) 208 [arXiv:1812.02614] [INSPIRE].
  56. [56]
    C. Hays, A. Martin, V. Sanz and J. Setford, On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP 02 (2019) 123 [arXiv:1808.00442] [INSPIRE].
  57. [57]
    B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].
  58. [58]
    A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert series for flavor invariants of the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].
  59. [59]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    E. Gates and J. Terning, Negative contributions to S from Majorana particles, Phys. Rev. Lett. 67 (1991) 1840 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M.J. Dugan and L. Randall, The sign of S from electroweak radiative corrections, Phys. Lett. B 264 (1991) 154 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Blondel et al., Electroweak parameters from a high statistics neutrino nucleon scattering experiment, Z. Phys. C 45 (1990) 361 [INSPIRE].Google Scholar
  63. [63]
    B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D.C. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: a global analysis, Phys. Rev. Lett. 65 (1990) 2967 [Erratum ibid. 66 (1991) 395] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  67. [67]
    D.C. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: an update, Phys. Rev. D 44 (1991) 1591 [INSPIRE].ADSGoogle Scholar
  68. [68]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Gori and I. Low, Precision Higgs measurements: constraints from new oblique corrections, JHEP 09 (2013) 151 [arXiv:1307.0496] [INSPIRE].
  70. [70]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
  71. [71]
    C. Englert, G.F. Giudice, A. Greljo and M. Mccullough, The \( \hat{H} \) -parameter: an oblique Higgs view, arXiv:1903.07725 [INSPIRE].
  72. [72]
    C.H. Llewellyn Smith, On the determination of sin2 θ W in semileptonic neutrino interactions, Nucl. Phys. B 228 (1983) 205 [INSPIRE].
  73. [73]
    M.J.G. Veltman, Limit on mass differences in the Weinberg model, Nucl. Phys. B 123 (1977) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J.E. Kim, P. Langacker, M. Levine and H.H. Williams, A theoretical and experimental review of the weak neutral current: a determination of its structure and limits on deviations from the minimal SU(2)L × U(1) electroweak theory, Rev. Mod. Phys. 53 (1981) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.F. Wheater and C.H. Llewellyn Smith, Electroweak radiative corrections to neutrino and electron scattering and the value of sin2 θ W, Nucl. Phys. B 208 (1982) 27 [Erratum ibid. B 226 (1983) 547] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Gluck and E. Reya, Higher twist ambiguities in the determination of sin2 θ W, Phys. Rev. Lett. 47 (1981) 1104 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    R. Renken and M.E. Peskin, Corrections to weak interaction parameters in theories of technicolor, Nucl. Phys. B 211 (1983) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    K. Hagiwara, S. Matsumoto, D. Haidt and C.S. Kim, A novel approach to confront electroweak data and theory, Z. Phys. C 64 (1994) 559 [Erratum ibid. C 68 (1995) 352] [hep-ph/9409380] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Bjørn and M. Trott, Interpreting W mass measurements in the SMEFT, Phys. Lett. B 762 (2016) 426 [arXiv:1606.06502] [INSPIRE].
  80. [80]
    M.B. Voloshin, Upper bound on tensor interaction in the decay π e νγ, Phys. Lett. B 283 (1992) 120 [INSPIRE].
  81. [81]
    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].
  82. [82]
    H. Georgi, Effective field theory and electroweak radiative corrections, Nucl. Phys. B 363 (1991) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    D.C. Kennedy and B.W. Lynn, Electroweak radiative corrections with an effective Lagrangian: four fermion processes, Nucl. Phys. B 322 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D.C. Kennedy, Electroweak effective Lagrangian and running couplings revisited, Nucl. Phys. B 351 (1991) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    G. Altarelli, R. Casalbuoni, F. Feruglio and R. Gatto, Bounds on extended gauge models from LEP data, Phys. Lett. B 245 (1990) 669 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M.B. Einhorn, D.R.T. Jones and M.J.G. Veltman, Heavy particles and the ρ parameter in the Standard Model, Nucl. Phys. B 191 (1981) 146 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].
  89. [89]
    E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. É boli and M.C. Gonzalez-Garcia, Electroweak sector under scrutiny: a combined analysis of LHC and electroweak precision data, Phys. Rev. D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].
  90. [90]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].
  91. [91]
    M. Trott, On the consistent use of constructed observables, JHEP 02 (2015) 046 [arXiv:1409.7605] [INSPIRE].
  92. [92]
    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].
  93. [93]
    A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].
  94. [94]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].
  95. [95]
    A. Falkowski, G. Grilli di Cortona and Z. Tabrizi, Future DUNE constraints on EFT, JHEP 04 (2018) 101 [arXiv:1802.08296] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    A.V. Manohar, An exactly solvable model for dimension six Higgs operators and h → γγ, Phys. Lett. B 726 (2013) 347 [arXiv:1305.3927] [INSPIRE].
  97. [97]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
  98. [98]
    F. Bonnet, M.B. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].
  99. [99]
    F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].
  100. [100]
    F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].
  101. [101]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].
  102. [102]
    J. Brehmer, A. Freitas, D. Lopez-Val and T. Plehn, Pushing Higgs effective theory to its limits, Phys. Rev. D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE].
  103. [103]
    M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  104. [104]
    L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].
  105. [105]
    W. Skiba, Effective field theory and precision electroweak measurements, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, U.S.A., 1-26 June 2009, World Scientific, Singapore (2011), pg. 5 [arXiv:1006.2142] [INSPIRE].
  106. [106]
    C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].
  107. [107]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].
  108. [108]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].
  109. [109]
    W. Dekens, E.E. Jenkins, A.V. Manohar and P. Stoffer, Non-perturbative effects in μ, JHEP 01 (2019) 088 [arXiv:1810.05675] [INSPIRE].
  110. [110]
    S. Dawson and A. Ismail, Standard Model EFT corrections to Z boson decays, Phys. Rev. D 98 (2018) 093003 [arXiv:1808.05948] [INSPIRE].
  111. [111]
    S. Dawson and P.P. Giardino, Electroweak corrections to Higgs boson decays to γγ and W + W in Standard Model EFT, Phys. Rev. D 98 (2018) 095005 [arXiv:1807.11504] [INSPIRE].
  112. [112]
    S. Karmakar and S. Rakshit, Relaxed constraints on the heavy scalar masses in 2HDM, arXiv:1901.11361 [INSPIRE].
  113. [113]
    A. Crivellin, M. Ghezzi and M. Procura, Effective field theory with two Higgs doublets, JHEP 09 (2016) 160 [arXiv:1608.00975] [INSPIRE].
  114. [114]
    J.L. Diaz-Cruz, J. Hernandez-Sanchez and J.J. Toscano, An effective Lagrangian description of charged Higgs decays H +W + γ, W + Z and W + h 0, Phys. Lett. B 512 (2001) 339 [hep-ph/0106001] [INSPIRE].
  115. [115]
    R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective Lagrangian into HDECAY, Comput. Phys. Commun. 185 (2014) 3412 [arXiv:1403.3381] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  116. [116]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
  117. [117]
    S. Bar-Shalom, J. Cohen, A. Soni and J. Wudka, Phenomenology of TeV-scale scalar leptoquarks in the EFT, arXiv:1812.03178 [INSPIRE].
  118. [118]
    R. Gomez-Ambrosio, Studies of dimension-six EFT effects in vector boson scattering, Eur. Phys. J. C 79 (2019) 389 [arXiv:1809.04189] [INSPIRE].
  119. [119]
    L. Graf, F.F. Deppisch, F. Iachello and J. Kotila, Short-range neutrinoless double beta decay mechanisms, Phys. Rev. D 98 (2018) 095023 [arXiv:1806.06058] [INSPIRE].
  120. [120]
    F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, JHEP 06 (2012) 146 [arXiv:1204.5986] [INSPIRE].
  121. [121]
    S. Bhattacharya and J. Wudka, Dimension-seven operators in the Standard Model with right handed neutrinos, Phys. Rev. D 94 (2016) 055022 [Erratum ibid. D 95 (2017) 039904] [arXiv:1505.05264] [INSPIRE].
  122. [122]
    S. Ghosh, R. Islam and A. Kundu, Scattering unitarity with effective dimension-6 operators, J. Phys. G 45 (2018) 015003 [arXiv:1704.01867] [INSPIRE].
  123. [123]
    T. Corbett, O.J.P. É boli and M.C. Gonzalez-Garcia, Unitarity constraints on dimension-six operators II: including fermionic operators, Phys. Rev. D 96 (2017) 035006 [arXiv:1705.09294] [INSPIRE].
  124. [124]
    S.F. King, A. Merle and L. Panizzi, Effective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC, JHEP 11 (2014) 124 [arXiv:1406.4137] [INSPIRE].
  125. [125]
    A. Crivellin, M. Ghezzi, L. Panizzi, G.M. Pruna and A. Signer, Low- and high-energy phenomenology of a doubly charged scalar, Phys. Rev. D 99 (2019) 035004 [arXiv:1807.10224] [INSPIRE].
  126. [126]
    C.-Q. Geng and D. Huang, Large ν-ν oscillations from high-dimensional lepton number violating operator, JHEP 03 (2017) 103 [arXiv:1612.03721] [INSPIRE].
  127. [127]
    G. Elgaard-Clausen and M. Trott, On expansions in neutrino effective field theory, JHEP 11 (2017) 088 [arXiv:1703.04415] [INSPIRE].
  128. [128]
    R. Cepedello, M. Hirsch and J.C. Helo, Loop neutrino masses from d = 7 operator, JHEP 07 (2017) 079 [arXiv:1705.01489] [INSPIRE].
  129. [129]
    Y. Liao and X.-D. Ma, Operators up to dimension seven in Standard Model effective field theory extended with sterile neutrinos, Phys. Rev. D 96 (2017) 015012 [arXiv:1612.04527] [INSPIRE].
  130. [130]
    S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dilepton events, JHEP 07 (2019) 144 [arXiv:1812.07575] [INSPIRE].
  131. [131]
    Z.U. Khandker, D. Li and W. Skiba, Electroweak corrections from triplet scalars, Phys. Rev. D 86 (2012) 015006 [arXiv:1201.4383] [INSPIRE].
  132. [132]
    J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].
  133. [133]
    J. Ellis, V. Sanz and T. You, The effective Standard Model after LHC run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].
  134. [134]
    C. Englert and M. Spannowsky, Effective theories and measurements at colliders, Phys. Lett. B 740 (2015) 8 [arXiv:1408.5147] [INSPIRE].
  135. [135]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].
  136. [136]
    H. Belusca-Maito, Effective Higgs Lagrangian and constraints on Higgs couplings, arXiv:1404.5343 [INSPIRE].
  137. [137]
    J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].
  138. [138]
    M.B. Einhorn and J. Wudka, Higgs-boson couplings beyond the Standard Model, Nucl. Phys. B 877 (2013) 792 [arXiv:1308.2255] [INSPIRE].
  139. [139]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
  140. [140]
    H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on electroweak effective operators at one loop, Phys. Rev. D 88 (2013) 015028 [arXiv:1306.3380] [INSPIRE].
  141. [141]
    R.S. Gupta, A. Pomarol and F. Riva, BSM primary effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].
  142. [142]
    L. Berthier and M. Trott, Consistent constraints on the Standard Model effective field theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].
  143. [143]
    A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].
  144. [144]
    C.-Y. Chen, S. Dawson and C. Zhang, Electroweak effective operators and Higgs physics, Phys. Rev. D 89 (2014) 015016 [arXiv:1311.3107] [INSPIRE].
  145. [145]
    A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, The decay hγγ in the Standard Model effective field theory, JHEP 08 (2018) 103 [arXiv:1805.00302] [INSPIRE].
  146. [146]
    S. Davidson, Y. Kuno and M. Yamanaka, Selecting μe conversion targets to distinguish lepton flavour-changing operators, Phys. Lett. B 790 (2019) 380 [arXiv:1810.01884] [INSPIRE].
  147. [147]
    E. Vryonidou and C. Zhang, Dimension-six electroweak top-loop effects in Higgs production and decay, JHEP 08 (2018) 036 [arXiv:1804.09766] [INSPIRE].
  148. [148]
    H. Hesari, H. Khanpour and M. Mohammadi Najafabadi, Study of Higgs effective couplings at electron-proton colliders, Phys. Rev. D 97 (2018) 095041 [arXiv:1805.04697] [INSPIRE].
  149. [149]
    J. Baglio, S. Dawson and I.M. Lewis, NLO effects in EFT fits to W + W production at the LHC, Phys. Rev. D 99 (2019) 035029 [arXiv:1812.00214] [INSPIRE].
  150. [150]
    L. Silvestrini and M. Valli, Model-independent bounds on the Standard Model effective theory from flavour physics, arXiv:1812.10913 [INSPIRE].
  151. [151]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Rep. (2017) 441 [arXiv:1606.00947] [INSPIRE].
  152. [152]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Rep. (2017) 255 [arXiv:1606.09408] [INSPIRE].
  153. [153]
    A. Blondel et al., Standard Model theory for the FCC-ee: the Tera-Z, in Mini Workshop on Precision EW and QCD Calculations for the FCC Studies: methods and techniques, CERN, Geneva, Switzerland, 12-13 January 2018 [arXiv:1809.01830] [INSPIRE].
  154. [154]
    H. Bélusca-Maïto, A. Falkowski, D. Fontes, J.C. Romão and J.P. Silva, Higgs EFT for 2HDM and beyond, Eur. Phys. J. C 77 (2017) 176 [arXiv:1611.01112] [INSPIRE].
  155. [155]
    S. Karmakar and S. Rakshit, Higher dimensional operators in 2HDM, JHEP 10 (2017) 048 [arXiv:1707.00716] [INSPIRE].ADSCrossRefGoogle Scholar
  156. [156]
    S. Karmakar and S. Rakshit, Alignment limit in 2HDM: robustness put to test, JHEP 09 (2018) 142 [arXiv:1802.03366] [INSPIRE].
  157. [157]
    H. Weyl, The classical groups: their invariants and representations, Princeton landmarks in mathematics and physics, Princeton University Press, Princeton, U.S.A. (1997).Google Scholar
  158. [158]
    T. Bröcker and T. Dieck, Representations of compact Lie groups, Graduate Texts Math. 98, Springer, Germany (2003).Google Scholar
  159. [159]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: a geometric aperçu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].
  160. [160]
    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].
  161. [161]
    B. Gruber and A.U. Klimyk, Properties of linear representations with a highest weight for the semisimple Lie algebras, J. Math. Phys. 16 (1975) 1816 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  162. [162]
    V.K. Dobrev, Characters of the positive energy UIRs of D = 4 conformal supersymmetry, Phys. Part. Nucl. 38 (2007) 564 [hep-th/0406154] [INSPIRE].CrossRefGoogle Scholar
  163. [163]
    A. Bourget and J. Troost, The conformal characters, JHEP 04 (2018) 055 [arXiv:1712.05415] [INSPIRE].
  164. [164]
    G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  165. [165]
    S. Ferrara and C. Fronsdal, Conformal fields in higher dimensions, in Recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Proceedings, 9th Marcel Grossmann Meeting, MG’9, Rome, Italy, 2-8 July 2000, pg. 508 [hep-th/0006009] [INSPIRE].
  166. [166]
    J.L. Cardy, Operator content and modular properties of higher dimensional conformal field theories, Nucl. Phys. B 366 (1991) 403 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  167. [167]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Grad. Texts Contemp. Phys., Springer, New York, NY, U.S.A. (1997) [INSPIRE].
  168. [168]
    W. Siegel, All free conformal representations in all dimensions, Int. J. Mod. Phys. A 4 (1989) 2015 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  169. [169]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  170. [170]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].
  171. [171]
    A. Barabanschikov, L. Grant, L.L. Huang and S. Raju, The spectrum of Yang-Mills on a sphere, JHEP 01 (2006) 160 [hep-th/0501063] [INSPIRE].
  172. [172]
    A. Hanany, N. Mekareeya and G. Torri, The Hilbert series of adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].
  173. [173]
    D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry,
  174. [174]
    H. Schenck, Computational algebraic geometry, Cambridge University Press, Cambridge, U.K. (2003).CrossRefzbMATHGoogle Scholar
  175. [175]
    D.A. Cox, J. Little and D. O’Shea, Ideals, varieties and algorithms: an introduction to computational algebraic geometry and commutative algebra, Springer, Switzerland (2015).CrossRefzbMATHGoogle Scholar
  176. [176]
    B. Sturmfels, Algorithms in invariant theory, Springer, Vienna, Austria (2008).zbMATHGoogle Scholar
  177. [177]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].
  178. [178]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  179. [179]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
  180. [180]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].
  181. [181]
    H.E. Haber, The Higgs data and the decoupling limit, in Proceedings, 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama, Japan, 13-16 February 2013 [arXiv:1401.0152] [INSPIRE].
  182. [182]
    C.-Y. Chen, M. Freid and M. Sher, Next-to-minimal two Higgs doublet model, Phys. Rev. D 89 (2014) 075009 [arXiv:1312.3949] [INSPIRE].
  183. [183]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  184. [184]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].ADSCrossRefGoogle Scholar
  185. [185]
    G. Bhattacharyya and D. Das, Scalar sector of two-Higgs-doublet models: a minireview, Pramana 87 (2016) 40 [arXiv:1507.06424] [INSPIRE].ADSCrossRefGoogle Scholar
  186. [186]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].
  187. [187]
    Y. Kikuta, Y. Okada and Y. Yamamoto, Structure of dimension-six derivative interactions in pseudo Nambu-Goldstone N Higgs doublet models, Phys. Rev. D 85 (2012) 075021 [arXiv:1111.2120] [INSPIRE].ADSGoogle Scholar
  188. [188]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  189. [189]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  190. [190]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  191. [191]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  192. [192]
    J.F. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs bosons in left-right symmetric models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].ADSGoogle Scholar
  193. [193]
    N.G. Deshpande, J.F. Gunion, B. Kayser and F.I. Olness, Left-right symmetric electroweak models with triplet Higgs, Phys. Rev. D 44 (1991) 837 [INSPIRE].ADSGoogle Scholar
  194. [194]
    G. Senjanović and A. Sokorac, Effects of heavy Higgs scalars at low-energies, Phys. Rev. D 18 (1978) 2708 [INSPIRE].ADSGoogle Scholar
  195. [195]
    J.A. Grifols, Higgs bosons in a left-right symmetric gauge model, Phys. Rev. D 18 (1978) 2704 [INSPIRE].ADSGoogle Scholar
  196. [196]
    F.I. Olness and M.E. Ebel, Constraints on the Higgs boson masses in left-right electroweak gauge theories, Phys. Rev. D 32 (1985) 1769 [INSPIRE].ADSGoogle Scholar
  197. [197]
    M. Frank, H. Hamidian and C.S. Kalman, Hadronic decay widths of Higgs bosons in the left-right symmetric model, Phys. Rev. D 45 (1992) 241 [INSPIRE].ADSGoogle Scholar
  198. [198]
    D. Chang, X.-G. He, W.-Y. Keung, B.H.J. McKellar and D. Wyler, Neutron electric dipole moment due to Higgs exchange in left-right symmetric models, Phys. Rev. D 46 (1992) 3876 [hep-ph/9209284] [INSPIRE].
  199. [199]
    J. Maalampi and A. Pietilae, Higgs contribution to the W pair production in left-right electroweak model, Z. Phys. C 59 (1993) 257 [INSPIRE].ADSGoogle Scholar
  200. [200]
    J. Gluza and M. Zralek, Higgs boson contributions to neutrino production in e e + collisions in a left-right symmetric model, Phys. Rev. D 51 (1995) 4695 [hep-ph/9409225] [INSPIRE].
  201. [201]
    G. Bhattacharyya and A. Raychaudhuri, Constraining the charged Higgs mass in the left-right symmetric model from b, Phys. Lett. B 357 (1995) 119 [hep-ph/9505356] [INSPIRE].
  202. [202]
    G.G. Boyarkina, O.M. Boyarkin and A.N. Senko, Higgs bosons in the left-right model, Eur. Phys. J. C 13 (2000) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  203. [203]
    G. Barenboim, M. Gorbahn, U. Nierste and M. Raidal, Higgs sector of the minimal left-right symmetric model, Phys. Rev. D 65 (2002) 095003 [hep-ph/0107121] [INSPIRE].
  204. [204]
    I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [INSPIRE].
  205. [205]
    G. Azuelos, K. Benslama and J. Ferland, Prospects for the search for a doubly-charged Higgs in the left-right symmetric model with ATLAS, J. Phys. G 32 (2006) 73 [hep-ph/0503096] [INSPIRE].
  206. [206]
    K. Kiers, M. Assis and A.A. Petrov, Higgs sector of the left-right model with explicit CP-violation, Phys. Rev. D 71 (2005) 115015 [hep-ph/0503115] [INSPIRE].
  207. [207]
    D.-W. Jung and K.Y. Lee, Production of the charged Higgs bosons at the CERN Large Hadron Collider in the left-right symmetric model, Phys. Rev. D 78 (2008) 015022 [arXiv:0802.1572] [INSPIRE].
  208. [208]
    D. Guadagnoli and R.N. Mohapatra, TeV scale left right symmetry and flavor changing neutral Higgs effects, Phys. Lett. B 694 (2011) 386 [arXiv:1008.1074] [INSPIRE].
  209. [209]
    M. Blanke, A.J. Buras, K. Gemmler and T. Heidsieck, ΔF = 2 observables and BX q γ decays in the left-right model: Higgs particles striking back, JHEP 03 (2012) 024 [arXiv:1111.5014] [INSPIRE].
  210. [210]
    R.N. Mohapatra and Y. Zhang, LHC accessible second Higgs boson in the left-right model, Phys. Rev. D 89 (2014) 055001 [arXiv:1401.0018] [INSPIRE].
  211. [211]
    U. Aydemir, D. Minic, C. Sun and T. Takeuchi, Higgs mass, superconnections and the TeV-scale left-right symmetric model, Phys. Rev. D 91 (2015) 045020 [arXiv:1409.7574] [INSPIRE].
  212. [212]
    A. Maiezza, M. Nemevšek and F. Nesti, Lepton number violation in Higgs decay at LHC, Phys. Rev. Lett. 115 (2015) 081802 [arXiv:1503.06834] [INSPIRE].
  213. [213]
    A. Maiezza and M. Nemevšek, Higgs boson(s) in the minimal left-right model, Acta Phys. Polon. B 46 (2015) 2317 [INSPIRE].ADSCrossRefGoogle Scholar
  214. [214]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs sector of the minimal left-right symmetric model at future hadron colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].
  215. [215]
    J. Chakrabortty, TeV scale double seesaw in left-right symmetric theories, arXiv:1003.3154 [INSPIRE].
  216. [216]
    J. Chakrabortty, Type I and new seesaw in left-right symmetric theories, Phys. Lett. B 690 (2010) 382 [arXiv:1005.1377] [INSPIRE].ADSCrossRefGoogle Scholar
  217. [217]
    A. Maiezza, G. Senjanović and J.C. Vasquez, Higgs sector of the minimal left-right symmetric theory, Phys. Rev. D 95 (2017) 095004 [arXiv:1612.09146] [INSPIRE].
  218. [218]
    F.F. Deppisch, T.E. Gonzalo and L. Graf, Surveying the SO(10) model landscape: the left-right symmetric case, Phys. Rev. D 96 (2017) 055003 [arXiv:1705.05416] [INSPIRE].
  219. [219]
    P.S. Bhupal Dev, R.N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric model, JHEP 02 (2019) 154 [arXiv:1811.06869] [INSPIRE].
  220. [220]
    P. Duka, J. Gluza and M. Zralek, Quantization and renormalization of the manifest left-right symmetric model of electroweak interactions, Annals Phys. 280 (2000) 336 [hep-ph/9910279] [INSPIRE].
  221. [221]
    A. Kundu and P. Roy, A general treatment of oblique parameters, Int. J. Mod. Phys. A 12 (1997) 1511 [hep-ph/9603323] [INSPIRE].
  222. [222]
    O. Cobanoglu, E. Ozcan, S. Sultansoy and G. Unel, OPUCEM: a library with error checking mechanism for computing oblique parameters, Comput. Phys. Commun. 182 (2011) 1732 [arXiv:1005.2784] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  223. [223]
    G. Funk, D. O’Neil and R.M. Winters, What the oblique parameters S, T and U and their extensions reveal about the 2HDM: a numerical analysis, Int. J. Mod. Phys. A 27 (2012) 1250021 [arXiv:1110.3812] [INSPIRE].
  224. [224]
    B. Holdom, Negative T from a dynamical left-handed neutrino mass, Phys. Rev. D 54 (1996) R721 [hep-ph/9602248] [INSPIRE].
  225. [225]
    G. Sanchez-Colon and J. Wudka, Effective operator contributions to the oblique parameters, Phys. Lett. B 432 (1998) 383 [hep-ph/9805366] [INSPIRE].
  226. [226]
    B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].ADSGoogle Scholar
  227. [227]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [Erratum ibid. D 88 (2013) 039901] [arXiv:1305.1624] [INSPIRE].ADSGoogle Scholar
  228. [228]
    J. Chakrabortty, J. Gluza, R. Sevillano and R. Szafron, Left-right symmetry at LHC and precise 1-loop low energy data, JHEP 07 (2012) 038 [arXiv:1204.0736] [INSPIRE].
  229. [229]
    G. Bambhaniya, J. Chakrabortty, J. Gluza, M. Kordiaczynska and R. Szafron, Left-right symmetry and the charged Higgs bosons at the LHC, JHEP 05 (2014) 033 [arXiv:1311.4144] [INSPIRE].
  230. [230]
    G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jelinski and M. Kordiaczynska, Lowest limits on the doubly charged Higgs boson masses in the minimal left-right symmetric model, Phys. Rev. D 90 (2014) 095003 [arXiv:1408.0774] [INSPIRE].
  231. [231]
    R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [INSPIRE].ADSCrossRefGoogle Scholar
  232. [232]
    D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for Hτ + τ in weak boson fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE].
  233. [233]
    D.L. Rainwater and D. Zeppenfeld, Observing HW W e ± μOpen image in new window in weak boson fusion with dual forward jet tagging at the CERN LHC, Phys. Rev. D 60 (1999) 113004 [Erratum ibid. D 61 (2000) 099901] [hep-ph/9906218] [INSPIRE].
  234. [234]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].
  235. [235]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].ADSGoogle Scholar
  236. [236]
    F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Signal of right-handed charged gauge bosons at the LHC?, Phys. Rev. D 90 (2014) 053014 [arXiv:1407.5384] [INSPIRE].ADSGoogle Scholar
  237. [237]
    F.F. Deppisch et al., Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model, Phys. Rev. D 93 (2016) 013011 [arXiv:1508.05940] [INSPIRE].
  238. [238]
    B.A. Dobrescu and Z. Liu, W boson near 2 TeV: predictions for run 2 of the LHC, Phys. Rev. Lett. 115 (2015) 211802 [arXiv:1506.06736] [INSPIRE].
  239. [239]
    J. Gluza and T. Jelinski, Heavy neutrinos and the pplljj CMS data, Phys. Lett. B 748 (2015) 125 [arXiv:1504.05568] [INSPIRE].
  240. [240]
    J. Gluza, T. Jelinski and R. Szafron, Lepton number violation andDiracnessof massive neutrinos composed of Majorana states, Phys. Rev. D 93 (2016) 113017 [arXiv:1604.01388] [INSPIRE].
  241. [241]
    M. Dhuria, C. Hati and U. Sarkar, Explaining the CMS excesses, baryogenesis and neutrino masses in E 6 motivated U(1)N model, Phys. Rev. D 93 (2016) 015001 [arXiv:1507.08297] [INSPIRE].
  242. [242]
    G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jelinski and R. Szafron, Search for doubly charged Higgs bosons through vector boson fusion at the LHC and beyond, Phys. Rev. D 92 (2015) 015016 [arXiv:1504.03999] [INSPIRE].
  243. [243]
    J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, Symmetry restored in dibosons at the LHC?, JHEP 10 (2015) 182 [arXiv:1507.00013] [INSPIRE].
  244. [244]
    P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].
  245. [245]
    J. Chakrabortty, H.Z. Devi, S. Goswami and S. Patra, Neutrinoless double-β decay in TeV scale left-right symmetric models, JHEP 08 (2012) 008 [arXiv:1204.2527] [INSPIRE].
  246. [246]
    P.S. Bhupal Dev, S. Goswami and M. Mitra, TeV scale left-right symmetry and large mixing effects in neutrinoless double beta decay, Phys. Rev. D 91 (2015) 113004 [arXiv:1405.1399] [INSPIRE].
  247. [247]
    Y.-L. Ma, The lepton-number-violating decays of B + , D + and \( {D}_S^{+} \) mesons indued by the doubly charged Higgs boson, Phys. Rev. D 79 (2009) 033014 [arXiv:0901.0863] [INSPIRE].
  248. [248]
    G. Cvetič, C. Dib, S.K. Kang and C.S. Kim, Probing Majorana neutrinos in rare K and D, D s , B, B c meson decays, Phys. Rev. D 82 (2010) 053010 [arXiv:1005.4282] [INSPIRE].
  249. [249]
    G. Bambhaniya, J. Chakrabortty and S.K. Dagaonkar, Rare meson decay through off-shell doubly charged scalars, Phys. Rev. D 91 (2015) 055020 [INSPIRE].
  250. [250]
    T. Wang, Y. Jiang, Z.-H. Wang and G.-L. Wang, Doubly-charged scalar in rare decays of the B c meson, Phys. Rev. D 97 (2018) 115031 [arXiv:1802.03120] [INSPIRE].
  251. [251]
    J. Chakrabortty, P. Ghosh, S. Mondal and T. Srivastava, Reconciling (g 2)μ and charged lepton flavor violating processes through a doubly charged scalar, Phys. Rev. D 93 (2016) 115004 [arXiv:1512.03581] [INSPIRE].
  252. [252]
    H. Huffel and G. Pocsik, Unitarity bounds on Higgs boson masses in the Weinberg-Salam model with two Higgs doublets, Z. Phys. C 8 (1981) 13 [INSPIRE].
  253. [253]
    W.J. Marciano, G. Valencia and S. Willenbrock, Renormalization group improved unitarity bounds on the Higgs boson and top quark masses, Phys. Rev. D 40 (1989) 1725 [INSPIRE].ADSGoogle Scholar
  254. [254]
    K. Kannike, Vacuum stability of a general scalar potential of a few fields, Eur. Phys. J. C 76 (2016) 324 [Erratum ibid. C 78 (2018) 355] [arXiv:1603.02680] [INSPIRE].ADSCrossRefGoogle Scholar
  255. [255]
    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].
  256. [256]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
  257. [257]
    J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C 46 (2006) 81 [hep-ph/0510154] [INSPIRE].
  258. [258]
    I. Chakraborty and A. Kundu, Two-Higgs doublet models confront the naturalness problem, Phys. Rev. D 90 (2014) 115017 [arXiv:1404.3038] [INSPIRE].
  259. [259]
    N. Chakrabarty, High-scale validity of a model with three-Higgs-doublets, Phys. Rev. D 93 (2016) 075025 [arXiv:1511.08137] [INSPIRE].
  260. [260]
    N. Chakrabarty and B. Mukhopadhyaya, High-scale validity of a two Higgs doublet scenario: metastability included, Eur. Phys. J. C 77 (2017) 153 [arXiv:1603.05883] [INSPIRE].ADSCrossRefGoogle Scholar
  261. [261]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Perturbative unitarity bounds in composite two-Higgs doublet models, Phys. Rev. D 94 (2016) 055017 [arXiv:1602.06437] [INSPIRE].ADSGoogle Scholar
  262. [262]
    J. Maalampi, J. Sirkka and I. Vilja, Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett. B 265 (1991) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  263. [263]
    Y. Kikuta and Y. Yamamoto, Perturbative unitarity of Higgs derivative interactions, PTEP 2013 (2013) 053B05 [arXiv:1210.5674] [INSPIRE].
  264. [264]
    T. Mondal, U.K. Dey and P. Konar, Implications of unitarity and charge breaking minima in a left-right symmetric model, Phys. Rev. D 92 (2015) 096005 [arXiv:1508.04960] [INSPIRE].
  265. [265]
    J. Chakrabortty, J. Gluza, T. Jelinski and T. Srivastava, Theoretical constraints on masses of heavy particles in left-right symmetric models, Phys. Lett. B 759 (2016) 361 [arXiv:1604.06987] [INSPIRE].
  266. [266]
    J. Chakrabortty, P. Konar and T. Mondal, Copositive criteria and boundedness of the scalar potential, Phys. Rev. D 89 (2014) 095008 [arXiv:1311.5666] [INSPIRE].
  267. [267]
    J. Chakrabortty, P. Konar and T. Mondal, Constraining a class of B-L extended models from vacuum stability and perturbativity, Phys. Rev. D 89 (2014) 056014 [arXiv:1308.1291] [INSPIRE].
  268. [268]
    A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, SmeftFRFeynman rules generator for the Standard Model effective field theory, arXiv:1904.03204 [INSPIRE].
  269. [269]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  270. [270]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOthe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  271. [271]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  272. [272]
    A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for the Standard Model effective field theory in R ξ -gauges, JHEP 06 (2017) 143 [arXiv:1704.03888] [INSPIRE].
  273. [273]
    D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology KanpurKanpurIndia

Personalised recommendations