Advertisement

Journal of High Energy Physics

, 2018:82 | Cite as

Phase transitions and conductivities of Floquet fluids

  • Andrew Baumgartner
  • Michael Spillane
Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

We investigate the phase structure and conductivity of a relativistic fluid in a circulating electric field with a transverse magnetic field. This system exhibits behavior similar to other driven systems such as strongly coupled driven CFTs [1] or a simple anharmonic oscillator. We identify distinct regions of fluid behavior as a function of driving frequency, and argue that a “phase” transition will occur. Such a transition could be measurable in graphene, and may be characterized by sudden discontinuous increase in the Hall conductivity. The presence of the discontinuity depends on how the boundary is approached as the frequency or amplitude is dialed. In the region where two solution exists the measured conductivity will depend on how the system is prepared.

Keywords

Holography and condensed matter physics (AdS/CMT) Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Rangamani, M. Rozali and A. Wong, Driven Holographic CFTs, JHEP 04 (2015) 093 [arXiv:1502.05726] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. Cayssol, B. Dóra, F. Simon and R. Moessner, Floquet topological insulators, Phys. Status Solidi RRL 7 (2013) 101 [arXiv:1211.5623].CrossRefGoogle Scholar
  3. [3]
    D. Carpentier, P. Delplace, M. Fruchart and K. Gawedzki, Topological index for periodically driven time-reversal invariant 2d systems, Phys. Rev. Lett. 114 (2015) 106806 [arXiv:1407.7747].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Roy and F. Harper, Periodic table for Floquet topological insulators, Phys. Rev. B 96 (2017) 155118 [arXiv:1603.06944].
  5. [5]
    F. Nathan and M.S. Rudner, Topological singularities and the general classification of Floquet-Bloch systems, New J. Phys. 17 (2015) 125014 [arXiv:1506.07647].ADSCrossRefGoogle Scholar
  6. [6]
    R. Wang, B. Wang, R. Shen, L. Sheng and D.Y. Xing, Floquet Weyl semimetal induced by off-resonant light, Europhys. Lett. 105 (2014) 17004 [arXiv:1308.4266].ADSCrossRefGoogle Scholar
  7. [7]
    C.-K. Chan, P.A. Lee, K.S. Burch, J.H. Han and Y. Ran, When chiral photons meet chiral fermions — Photoinduced anomalous Hall effects in Weyl semimetals, Phys. Rev. Lett. 116 (2016) 026805 [arXiv:1509.05400] [INSPIRE].
  8. [8]
    S. Ebihara, K. Fukushima and T. Oka, Chiral pumping effect induced by rotating electric fields, Phys. Rev. B 93 (2016) 155107 [arXiv:1509.03673] [INSPIRE].
  9. [9]
    D.V. Else, B. Bauer and C. Nayak, Floquet time crystals, Phys. Rev. Lett. 117 (2016) 090402 [arXiv:1603.08001].
  10. [10]
    I.-D. Potirniche, A.C. Potter, M. Schleier-Smith, A. Vishwanath and N.Y. Yao, Floquet symmetry-protected topological phases in cold-atom systems, Phys. Rev. Lett. 119 (2017) 123601 [arXiv:1610.07611].ADSCrossRefGoogle Scholar
  11. [11]
    H.C. Po, L. Fidkowski, A. Vishwanath and A.C. Potter, Radical chiral Floquet phases in a periodically driven Kitaev model and beyond, Phys. Rev. B 96 (2017) 245116 [arXiv:1701.01440].
  12. [12]
    M.S. Rudner, N.H. Lindner, E. Berg and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3 (2013) 031005 [arXiv:1212.3324].
  13. [13]
    A. Biasi, P. Carracedo, J. Mas, D. Musso and A. Serantes, Floquet Scalar Dynamics in Global AdS, JHEP 04 (2018) 137 [arXiv:1712.07637] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, On periodically driven AdS/CFT, JHEP 11 (2013) 016 [arXiv:1308.2132] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W.-J. Li, Y. Tian and H.-b. Zhang, Periodically Driven Holographic Superconductor, JHEP 07 (2013) 030 [arXiv:1305.1600] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Hashimoto, S. Kinoshita, K. Murata and T. Oka, Holographic Floquet states I: a strongly coupled Weyl semimetal, JHEP 05 (2017) 127 [arXiv:1611.03702] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Kinoshita, K. Murata and T. Oka, Holographic Floquet states II: Floquet condensation of vector mesons in nonequilibrium phase diagram, JHEP 06 (2018) 096 [arXiv:1712.06786] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Moessner, P. Surówka and P. Witkowski, Pulsating flow and boundary layers in viscous electronic hydrodynamics, Phys. Rev. B 97 (2018) 161112 [arXiv:1710.00354].
  19. [19]
    A. Lucas and K.C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30 (2018) 053001 [arXiv:1710.08425] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79 (2009) 081406 [arXiv:0807.4767].
  21. [21]
    S.A. Hartnoll, P.K. Kovtun, M. Müller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
  22. [22]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  23. [23]
    A. Baumgartner, A. Karch and A. Lucas, Magnetoresistance in relativistic hydrodynamics without anomalies, JHEP 06 (2017) 054 [arXiv:1704.01592] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].
  26. [26]
    C.W. von Keyserlingk and S.L. Sondhi, Phase structure of one-dimensional interacting Floquet systems. I. Abelian symmetry-protected topological phases, Phys. Rev. B 93 (2016) 245145 [arXiv:1602.02157].
  27. [27]
    C.W. von Keyserlingk and S.L. Sondhi, Phase structure of one-dimensional interacting Floquet systems. II. Symmetry-broken phases, Phys. Rev. B 93 (2016) 245146.Google Scholar
  28. [28]
    D. Svintsov, Hydrodynamic-to-ballistic crossover in Dirac fluid, Phys. Rev. B 97 (2018) 121405 [arXiv:1710.05054].
  29. [29]
    K. Balasubramanian and C.P. Herzog, Losing Forward Momentum Holographically, Class. Quant. Grav. 31 (2014) 125010 [arXiv:1312.4953] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations