Journal of High Energy Physics

, 2018:76 | Cite as

Anomaly matching, (axial) Schwinger models, and high-T super Yang-Mills domain walls

  • Mohamed M. Anber
  • Erich Poppitz
Open Access
Regular Article - Theoretical Physics


We study the discrete chiral- and center-symmetry ’t Hooft anomaly matching in the charge-q two-dimensional Schwinger model. We show that the algebra of the discrete symmetry operators involves a central extension, implying the existence of q vacua, and that the chiral and center symmetries are spontaneously broken. We then argue that an axial version of the q = 2 model appears in the worldvolume theory on domain walls between center-symmetry breaking vacua in the high-temperature SU(2) \( \mathcal{N}=1 \) super-Yang-Mills theory and that it inherits the discrete ’t Hooft anomalies of the four-dimensional bulk. The Schwinger model results suggest that the high-temperature domain wall exhibits a surprisingly rich structure: it supports a non-vanishing fermion condensate and perimeter law for spacelike Wilson loops, thus mirroring many properties of the strongly coupled four-dimensional low-temperature theory. We also discuss generalizations to theories with multiple adjoint fermions and possible lattice tests.


Anomalies in Field and String Theories Field Theories in Lower Dimensions Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. ’t Hooft in Recent developments in gauge theories, G. ’t Hofft et al. eds., NATO Sci. Ser. B volume 59, Springer, Germany (1980).Google Scholar
  2. [2]
    Y. Frishman, A. Schwimmer, T. Banks and S. Yankielowicz, The axial anomaly and the bound state spectrum in confining theories, Nucl. Phys. B 177 (1981) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T.H. Hansson, H.B. Nielsen and I. Zahed, QED with unequal charges: a study of spontaneous Z n symmetry breaking, Nucl. Phys. B 451 (1995) 162 [Erratum ibid. B 456 (1995) 757] [hep-ph/9405324 [INSPIRE].
  7. [7]
    T. Sulejmanpasic and Y. Tanizaki, C-P-T anomaly matching in bosonic quantum field theory and spin chains, Phys. Rev. B 97 (2018) 144201 [arXiv:1802.02153] [INSPIRE].
  8. [8]
    Y. Tanizaki and T. Sulejmanpasic, Anomaly and global inconsistency matching: θ-angles, SU(3)/U(1)2 nonlinear σ-model, SU(3) chains and its generalizations, arXiv:1805.11423 [INSPIRE].
  9. [9]
    H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].
  10. [10]
    Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP 12 (2017) 056 [arXiv:1710.08923] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N.S. Manton, The Schwinger model and its axial anomaly, Annals Phys. 159 (1985) 220 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Iso and H. Murayama, Hamiltonian formulation of the Schwinger model: nonconfinement and screening of the charge, Prog. Theor. Phys. 84 (1990) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].
  14. [14]
    M.M. Anber, E. Poppitz and T. Sulejmanpasic, Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD, Phys. Rev. D 92 (2015) 021701 [arXiv:1501.06773] [INSPIRE].
  15. [15]
    Z. Komargodski, T. Sulejmanpasic and M. Unsal, Walls, anomalies and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
  16. [16]
    M. Shifman, Advanced topics in quantum field theory, Cambridge University Press, Cambridge, U.K. (2012).Google Scholar
  17. [17]
    Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on abelian Higgs models and persistent order, arXiv:1705.04786 [INSPIRE].
  18. [18]
    G. Bergner, S. Piemonte and M. Unsal, Adiabatic continuity and confinement in supersymmetric Yang-Mills theory on the lattice, arXiv:1806.10894 [INSPIRE].
  19. [19]
    J. Greensite, An introduction to the confinement problem, Lect. Notes Phys. 821 (2011) 1 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  20. [20]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].
  22. [22]
    G. ’t Hooft, Aspects of quark confinement, Phys. Scripta 24 (1981) 841 [INSPIRE].
  23. [23]
    Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft anomaly and level crossing in quantum mechanics, PTEP 2017 (2017) 113B05 [arXiv:1708.01962] [INSPIRE].
  24. [24]
    K. Aitken, A. Cherman and M. Unsal, Dihedral symmetry in SU(N ) Yang-Mills theory, arXiv:1804.05845 [INSPIRE].
  25. [25]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].
  26. [26]
    T. Bhattacharya, A. Gocksch, C. Korthals Altes and R.D. Pisarski, Interface tension in an SU(N ) gauge theory at high temperature, Phys. Rev. Lett. 66 (1991) 998 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Bhattacharya, A. Gocksch, C. Korthals Altes and R.D. Pisarski, Z(N) interface tension in a hot SU(N ) gauge theory, Nucl. Phys. B 383 (1992) 497 [hep-ph/9205231] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.V. Smilga, Are Z(N) bubbles really there?, Annals Phys. 234 (1994) 1 [INSPIRE].
  29. [29]
    C. Korthals-Altes, A. Kovner and M.A. Stephanov, Spatial ’t Hooft loop, hot QCD and Z(N) domain walls, Phys. Lett. B 469 (1999) 205 [hep-ph/9909516] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev. D 98 (2018) 034026 [arXiv:1805.12290] [INSPIRE].
  31. [31]
    C. Cordova and T.T. Dumitrescu, Candidate phases for SU(2) adjoint QCD 4 with two flavors from \( \mathcal{N}=2 \) supersymmetric Yang-Mills theory, arXiv:1806.09592 [INSPIRE].
  32. [32]
    M.M. Anber and L. Vincent-Genod, Classification of compactified su(N c) gauge theories with fermions in all representations, JHEP 12 (2017) 028 [arXiv:1704.08277] [INSPIRE].
  33. [33]
    G.R. Dvali and M.A. Shifman, Dynamical compactification as a mechanism of spontaneous supersymmetry breaking, Nucl. Phys. B 504 (1997) 127 [hep-th/9611213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    I. Sachs and A. Wipf, Generalized Thirring models, Annals Phys. 249 (1996) 380 [hep-th/9508142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    A. Athenodorou, E. Bennett, G. Bergner and B. Lucini, Infrared regime of SU(2) with one adjoint Dirac flavor, Phys. Rev. D 91 (2015) 114508 [arXiv:1412.5994] [INSPIRE].
  36. [36]
    S. Ali et al., The light bound states of \( \mathcal{N}=1 \) supersymmetric SU(3) Yang-Mills theory on the lattice, JHEP 03 (2018) 113 [arXiv:1801.08062] [INSPIRE].
  37. [37]
    D. Kutasov and A. Schwimmer, Universality in two-dimensional gauge theory, Nucl. Phys. B 442 (1995) 447 [hep-th/9501024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Z. Fodor et al., Status of a minimal composite Higgs theory, Int. J. Mod. Phys. A 32 (2017) 1747001 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsLewis & Clark CollegePortlandU.S.A.
  2. 2.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations