Advertisement

Journal of High Energy Physics

, 2018:74 | Cite as

Merging high energy with soft and collinear logarithms using HEJ and PYTHIA

  • Jeppe R. Andersen
  • Helen M. Brooks
  • Leif Lönnblad
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We present a method to combine the all-order treatment of the High Energy Jets exclusive partonic Monte Carlo (HEJ) with the parton shower of Pythia8, while retaining the logarithmic accuracy of both. This procedure enables the generation of fully realistic and hadronised events with HEJ. Furthermore, the combination of the two allorder treatments leads to improvements in the quality of the description of observables, in particular for regions with disparate transverse scales.

Keywords

Perturbative QCD Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D0 collaboration, V.M. Abazov et al., Studies of W boson plus jets production in pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 88 (2013) 092001 [arXiv:1302.6508] [INSPIRE].
  2. [2]
    ATLAS collaboration, Measurement of dijet production with a veto on additional central jet activity in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2011) 053 [arXiv:1107.1641] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector, Eur. Phys. J. C 75 (2015) 82 [arXiv:1409.8639] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 036 [arXiv:1202.0704] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of four-jet differential cross sections in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, JHEP 12 (2015) 105 [arXiv:1509.07335] [INSPIRE].
  7. [7]
    CMS collaboration, Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2016) 139 [arXiv:1601.06713] [INSPIRE].
  8. [8]
    V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  10. [10]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  12. [12]
    CMS collaboration, Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2216 [arXiv:1204.0696] [INSPIRE].
  13. [13]
    CMS collaboration, Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2013) 062 [arXiv:1305.7389] [INSPIRE].
  14. [14]
    ATLAS collaboration, Measurements of electroweak W jj production and constraints on anomalous gauge couplings with the ATLAS detector, Eur. Phys. J. C 77 (2017) 474 [arXiv:1703.04362] [INSPIRE].
  15. [15]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [INSPIRE].
  16. [16]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  17. [17]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Ciafaloni, Coherence Effects in Initial Jets at Small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Catani, F. Fiorani and G. Marchesini, QCD Coherence in Initial State Radiation, Phys. Lett. B 234 (1990) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Catani, F. Fiorani and G. Marchesini, Small x Behavior of Initial State Radiation in Perturbative QCD, Nucl. Phys. B 336 (1990) 18 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B 445 (1995) 49 [hep-ph/9412327] [INSPIRE].
  22. [22]
    H. Jung and G.P. Salam, Hadronic final state predictions from CCFM: The Hadron level Monte Carlo generator CASCADE, Eur. Phys. J. C 19 (2001) 351 [hep-ph/0012143] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    A.H. Mueller and H. Navelet, An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD, Nucl. Phys. B 282 (1987) 727 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L.H. Orr and W.J. Stirling, Dijet production at hadron hadron colliders in the BFKL approach, Phys. Rev. D 56 (1997) 5875 [hep-ph/9706529] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.H. Orr and W.J. Stirling, BFKL physics in dijet production at the LHC, Phys. Lett. B 436 (1998) 372 [hep-ph/9806371] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.R. Andersen and J.M. Smillie, Constructing All-Order Corrections to Multi-Jet Rates, JHEP 01 (2010) 039 [arXiv:0908.2786] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.R. Andersen and J.M. Smillie, The Factorisation of the t-channel Pole in quark-gluon Scattering, Phys. Rev. D 81 (2010) 114021 [arXiv:0910.5113] [INSPIRE].
  30. [30]
    J.R. Andersen and J.M. Smillie, Multiple Jets at the LHC with High Energy Jets, JHEP 06 (2011) 010 [arXiv:1101.5394] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].
  32. [32]
    G. Klamke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].
  33. [33]
    J.R. Andersen, K. Arnold and D. Zeppenfeld, Azimuthal Angle Correlations for Higgs Boson plus Multi-Jet Events, JHEP 06 (2010) 091 [arXiv:1001.3822] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.R. Andersen, L. Lönnblad and J.M. Smillie, A Parton Shower for High Energy Jets, JHEP 07 (2011) 110 [arXiv:1104.1316] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].
  37. [37]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  38. [38]
    J.R. Andersen, T. Hapola, A. Maier and J.M. Smillie, Higgs Boson Plus Dijets: Higher Order Corrections, JHEP 09 (2017) 065 [arXiv:1706.01002] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Del Duca, Parke-Taylor amplitudes in the multi-Regge kinematics, Phys. Rev. D 48 (1993) 5133 [hep-ph/9304259] [INSPIRE].
  42. [42]
    V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E. Boos et al., Generic user process interface for event generators, in Physics at TeV colliders. Proceedings, Euro Summer School, Les Houches, France, May 21-June 1, 2001 (2001) [hep-ph/0109068] [INSPIRE].
  44. [44]
    B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Coherence Effects in Deep Inelastic Scattering, Z. Phys. C 43 (1989) 625 [INSPIRE].
  45. [45]
    T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].
  47. [47]
    N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    L. Lönnblad and S. Prestel, Matching Tree-Level Matrix Elements with Interleaved Showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
  50. [50]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  51. [51]
    M. Bengtsson and T. Sjöstrand, Parton Showers in Leptoproduction Events, Z. Phys. C 37 (1988) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, Cambridge University Press, [Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 6 (1996) 1] [INSPIRE].
  53. [53]
    S. Alioli, J.R. Andersen, C. Oleari, E. Re and J.M. Smillie, Probing higher-order corrections in dijet production at the LHC, Phys. Rev. D 85 (2012) 114034 [arXiv:1202.1475] [INSPIRE].
  54. [54]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
  55. [55]
    ATLAS collaboration, Study of Jet Shapes in Inclusive Jet Production in pp Collisions at \( \sqrt{s}=7 \) TeV using the ATLAS Detector, Phys. Rev. D 83 (2011) 052003 [arXiv:1101.0070] [INSPIRE].
  56. [56]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
  57. [57]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
  59. [59]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  60. [60]
    S. Frixione and G. Ridolfi, Jet photoproduction at HERA, Nucl. Phys. B 507 (1997) 315 [hep-ph/9707345] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  62. [62]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  2. 2.School of Physics and AstronomyMonash UniversityClaytonAustralia
  3. 3.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations