Advertisement

Journal of High Energy Physics

, 2018:72 | Cite as

Weaving the exotic web

  • José J. Fernández-Melgarejo
  • Tetsuji Kimura
  • Yuho Sakatani
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

String and M-theory contain a family of branes forming U -duality multiplets. In particular, standard branes with codimension higher than or equal to two, can be explicitly found as supergravity solutions. However, whether domain-wall branes and space-filling branes can be found as supergravity solutions is still unclear. In this paper, we firstly provide a full list of exotic branes in type II string theory or M-theory compactified to three or higher dimensions. We show how to systematically obtain backgrounds of exotic domain-wall branes and space-filling branes as solutions of the double field theory or the exceptional field theory. Such solutions explicitly depend on the winding coordinates and cannot be given as solutions of the conventional supergravity theories. However, as the domain-wall solutions depend linearly on the winding coordinates, we describe them as solutions of deformed supergravities such as the Romans massive IIA supergravity or lower-dimensional gauged supergravities. We establish explicit relations among the domain-wall branes, the mixed-symmetry potentials, the locally non-geometric fluxes, and deformed supergravities.

Keywords

D-branes Flux compactifications String Duality Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory on T d, Nucl. Phys. B 509 (1998) 122 [hep-th/9707217] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Blau and M. O’Loughlin, Aspects of U duality in matrix theory, Nucl. Phys. B 525 (1998) 182 [hep-th/9712047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C.M. Hull, U duality and BPS spectrum of super Yang-Mills theory and M-theory, JHEP 07 (1998) 018 [hep-th/9712075] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    N.A. Obers, B. Pioline and E. Rabinovici, M theory and U duality on T d with gauge backgrounds, Nucl. Phys. B 525 (1998) 163 [hep-th/9712084] [INSPIRE].
  5. [5]
    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Eyras and Y. Lozano, Exotic branes and nonperturbative seven-branes, Nucl. Phys. B 573 (2000) 735 [hep-th/9908094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E.A. Bergshoeff and F. Riccioni, D-brane Wess-Zumino terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E.A. Bergshoeff and F. Riccioni, String solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].
  13. [13]
    E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].
  14. [14]
    E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric domain walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].
  15. [15]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual double field theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D.M. Lombardo, F. Riccioni and S. Risoli, P fluxes and exotic branes, JHEP 12 (2016) 114 [arXiv:1610.07975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E.A. Bergshoeff and F. Riccioni, Wrapping rules (in) string theory, JHEP 01 (2018) 046 [arXiv:1710.00642] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].
  19. [19]
    I. Schnakenburg and P.C. West, Kac-Moody symmetries of IIB supergravity, Phys. Lett. B 517 (2001) 421 [hep-th/0107181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    F. Riccioni and P.C. West, Dual fields and E 11, Phys. Lett. B 645 (2007) 286 [hep-th/0612001] [INSPIRE].
  22. [22]
    A.G. Tumanov and P. West, E 11 must be a symmetry of strings and branes, Phys. Lett. B 759 (2016) 663 [arXiv:1512.01644] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.G. Tumanov and P. West, E 11 in 11D, Phys. Lett. B 758 (2016) 278 [arXiv:1601.03974] [INSPIRE].
  24. [24]
    P. West, E 11 , brane dynamics and duality symmetries, Int. J. Mod. Phys. A 33 (2018) 1850080 [arXiv:1801.00669] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].
  26. [26]
    A. Kleinschmidt and P.C. West, Representations of G +++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].
  28. [28]
    P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].
  29. [29]
    P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [INSPIRE].
  30. [30]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E.A. Bergshoeff, C. Condeescu, G. Pradisi and F. Riccioni, Heterotic-type II duality and wrapping rules, JHEP 12 (2013) 057 [arXiv:1311.3578] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Pradisi and F. Riccioni, Non-geometric orbifolds and wrapping rules, JHEP 09 (2014) 170 [arXiv:1407.5576] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    W. Siegel, Manifest duality in low-energy superstrings, in International Conference on Strings 93, Berkeley, CA, U.S.A., 24-29 May 1993, pg. 353 [hep-th/9308133] [INSPIRE].
  37. [37]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].
  44. [44]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].
  49. [49]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. 85 (2012) 089908] [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
  50. [50]
    I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].
  51. [51]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].
  52. [52]
    P.C. West, Hidden superconformal symmetry in M-theory, JHEP 08 (2000) 007 [hep-th/0005270] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    C. Hillmann, E 7(7) and d = 11 supergravity, Ph.D. thesis, Humboldt U., Berlin, 2008. arXiv:0902.1509 [INSPIRE].
  54. [54]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. West, E 11 , generalised space-time and equations of motion in four dimensions, JHEP 12 (2012) 068 [arXiv:1206.7045] [INSPIRE].
  58. [58]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].
  59. [59]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  60. [60]
    O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  61. [61]
    O. Hohm and H. Samtleben, Exceptional field theory III: E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  62. [62]
    O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP 04 (2015) 050 [arXiv:1501.01600] [INSPIRE].
  63. [63]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].
  64. [64]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].
  65. [65]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)R + exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].
  66. [66]
    L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP 08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type-II equations, Nucl. Phys. B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].
  70. [70]
    L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].
  71. [71]
    Y. Sakatani, S. Uehara and K. Yoshida, Generalized gravity from modified DFT, JHEP 04 (2017) 123 [arXiv:1611.05856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    J.-I. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance for generalized supergravity backgrounds from the doubled formalism, PTEP 2017 (2017) 053B07 [arXiv:1703.09213] [INSPIRE].
  73. [73]
    A. Baguet, M. Magro and H. Samtleben, Generalized IIB supergravity from exceptional field theory, JHEP 03 (2017) 100 [arXiv:1612.07210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    I. Bakhmatov, D. Berman, A. Kleinschmidt, E. Musaev and R. Otsuki, Exotic branes in exceptional field theory: the SL(5) duality group, JHEP 08 (2018) 021 [arXiv:1710.09740] [INSPIRE].
  75. [75]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type-II 7 branes and 8 branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [INSPIRE].
  76. [76]
    P. Meessen and T. Ortín, An SL(2, Z) multiplet of nine-dimensional type-II supergravity theories, Nucl. Phys. B 541 (1999) 195 [hep-th/9806120] [INSPIRE].
  77. [77]
    F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: an exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  79. [79]
    E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    P.P. Cook, Exotic E 11 branes as composite gravitational solutions, Class. Quant. Grav. 26 (2009) 235023 [arXiv:0908.0485] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    L. Houart, A. Kleinschmidt and J. Lindman Hornlund, Some algebraic aspects of half-BPS bound states in M-theory, JHEP 03 (2010) 022 [arXiv:0911.5141] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    P.P. Cook, Bound states of string theory and beyond, JHEP 03 (2012) 028 [arXiv:1109.6595] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    E.A. Bergshoeff, J. Hartong, T. Ortín and D. Roest, Seven-branes and supersymmetry, JHEP 02 (2007) 003 [hep-th/0612072] [INSPIRE].
  85. [85]
    E. Bergshoeff, J. Hartong and D. Sorokin, Q7-branes and their coupling to IIB supergravity, JHEP 12 (2007) 079 [arXiv:0708.2287] [INSPIRE].
  86. [86]
    E.A. Bergshoeff, O. Hohm and F. Riccioni, Exotic dual of type II double field theory, Phys. Lett. B 767 (2017) 374 [arXiv:1612.02691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].
  88. [88]
    M. Günaydin, D. Lüst and E. Malek, Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions and missing momentum modes, JHEP 11 (2016) 027 [arXiv:1607.06474] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    D. Lüst, E. Malek and M. Syvari, Locally non-geometric fluxes and missing momenta in M-theory, JHEP 01 (2018) 050 [arXiv:1710.05919] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    G. Dibitetto, F. Riccioni and S. Risoli, Space-filling branes & gaugings, JHEP 07 (2018) 006 [arXiv:1803.07023] [INSPIRE].
  91. [91]
    G. Dibitetto, J.J. Fernández-Melgarejo, D. Marqués and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    D.S. Berman, E.T. Musaev and R. Otsuki, Exotic branes in exceptional field theory: E 7(7) and beyond, arXiv:1806.00430 [INSPIRE].
  93. [93]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    O. Aharony, String theory dualities from M-theory, Nucl. Phys. B 476 (1996) 470 [hep-th/9604103] [INSPIRE].
  96. [96]
    T. Nutma, SimpLie, a simple program for Lie algebras webpage, https://github.com/teake/simplie.
  97. [97]
    E. Eyras, B. Janssen and Y. Lozano, Five-branes, KK-monopoles and T-duality, Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].
  99. [99]
    T. Kimura, S. Sasaki and M. Yata, World-volume effective actions of exotic five-branes, JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  102. [102]
    T. Kimura, S. Sasaki and M. Yata, World-volume effective action of exotic five-brane in M-theory, JHEP 02 (2016) 168 [arXiv:1601.05589] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    C.D.A. Blair and E.T. Musaev, Five-brane actions in double field theory, JHEP 03 (2018) 111 [arXiv:1712.01739] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  104. [104]
    F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    T. Kimura, S. Sasaki and K. Shiozawa, Worldsheet instanton corrections to five-branes and waves in double field theory, JHEP 07 (2018) 001 [arXiv:1803.11087] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  109. [109]
    F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D 76 (2007) 041901 [arXiv:0704.3272] [INSPIRE].
  110. [110]
    B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].
  111. [111]
    N. Halmagyi, Non-geometric string backgrounds and worldsheet algebras, JHEP 07 (2008) 137 [arXiv:0805.4571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  112. [112]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  113. [113]
    D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  116. [116]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  117. [117]
    R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  118. [118]
    T. Asakawa, H. Muraki and S. Watamura, Gravity theory on Poisson manifold with R-flux, Fortsch. Phys. 63 (2015) 683 [arXiv:1508.05706] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  119. [119]
    Y. Kaneko, H. Muraki and S. Watamura, Contravariant gravity on Poisson manifolds and Einstein gravity, Class. Quant. Grav. 34 (2017) 115002 [arXiv:1610.06554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    Y. Sakatani and S. Uehara, Connecting M-theory and type IIB parameterizations in exceptional field theory, PTEP 2017 (2017) 043B05 [arXiv:1701.07819] [INSPIRE].
  121. [121]
    K. Lee, S.-J. Rey and Y. Sakatani, Effective action for non-geometric fluxes duality covariant actions, JHEP 07 (2017) 075 [arXiv:1612.08738] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  122. [122]
    G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  123. [123]
    G. Aldazabal, P.G. Camara and J.A. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  124. [124]
    G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  125. [125]
    T. Ortín, Gravity and strings, Cambridge University Press, Cambridge, U.K., (2015) [INSPIRE].
  126. [126]
    T. Ortín, SL(2, R) duality covariance of Killing spinors in axion-dilaton black holes, Phys. Rev. D 51 (1995) 790 [hep-th/9404035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  127. [127]
    Y. Imamura, Supersymmetries and BPS configurations on anti-de Sitter space, Nucl. Phys. B 537 (1999) 184 [hep-th/9807179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  128. [128]
    T. Kimura, Supersymmetry projection rules on exotic branes, PTEP 2016 (2016) 053B05 [arXiv:1601.02175] [INSPIRE].
  129. [129]
    G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  130. [130]
    D. Geissbühler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].
  131. [131]
    M. Graña and D. Marqués, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  132. [132]
    D.S. Berman and K. Lee, Supersymmetry for gauged double field theory and generalised Scherk-Schwarz reductions, Nucl. Phys. B 881 (2014) 369 [arXiv:1305.2747] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  133. [133]
    W. Cho, J.J. Fernández-Melgarejo, I. Jeon and J.-H. Park, Supersymmetric gauged double field theory: systematic derivation by virtue of twist, JHEP 08 (2015) 084 [arXiv:1505.01301] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  134. [134]
    E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non)Abelian gauged supergravities in nine-dimensions, JHEP 10 (2002) 061 [hep-th/0209205] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  135. [135]
    J.J. Fernández-Melgarejo, T. Ortín and E. Torrente-Lujan, The general gaugings of maximal d = 9 supergravity, JHEP 10 (2011) 068 [arXiv:1106.1760] [INSPIRE].
  136. [136]
    A. Catal-Ozer, Massive deformations of type IIA theory within double field theory, JHEP 02 (2018) 179 [arXiv:1706.08883] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  137. [137]
    E. Bergshoeff, Y. Lozano and T. Ortín, Massive branes, Nucl. Phys. B 518 (1998) 363 [hep-th/9712115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  138. [138]
    E. Bergshoeff and J.P. van der Schaar, On M nine-branes, Class. Quant. Grav. 16 (1999) 23 [hep-th/9806069] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  140. [140]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].
  141. [141]
    H. Godazgar, M. Godazgar and M.J. Perry, E 8 duality and dual gravity, JHEP 06 (2013) 044 [arXiv:1303.2035] [INSPIRE].
  142. [142]
    E. Malek, U-duality in three and four dimensions, Int. J. Mod. Phys. A 32 (2017) 1750169 [arXiv:1205.6403] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  143. [143]
    E. Malek, Timelike U-dualities in generalised geometry, JHEP 11 (2013) 185 [arXiv:1301.0543] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  144. [144]
    A.G. Tumanov and P. West, Generalised vielbeins and non-linear realisations, JHEP 10 (2014) 009 [arXiv:1405.7894] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Gravitational Physics, Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  2. 2.Departamento de FísicaUniversidad de MurciaMurciaSpain
  3. 3.Research Institute of Science and Technology, College of Science and TechnologyNihon UniversityTokyoJapan
  4. 4.Department of PhysicsKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations