Advertisement

Journal of High Energy Physics

, 2018:71 | Cite as

Sneutrino dark matter via pseudoscalar X-funnel meets inverse seesaw

  • Jung Chang
  • Kingman Cheung
  • Hiroyuki Ishida
  • Chih-Ting Lu
  • Martin Spinrath
  • Yue-Lin Sming Tsai
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

In this paper we study sneutrino dark matter in a recently proposed supersymmetric electroweak-scale inverse seesaw model, in which the majority of the sneutrino dark matter particle is a mixture of the right-handed sneutrino Ñc and the singlet field \( \tilde{S} \). The scalar field X responsible for the generation of neutrino masses can simultaneously play a crucial role for sneutrino annihilation in the early Universe via the pseudoscalar mediator AX into neutrinos. We focus here on the dominant annihilation channels and provide all the formulas together with analytic estimates in order to identify the relevant parameters. Furthermore, we show that the direct detection scattering cross section is many orders of magnitude below the current limits, and estimate the indirect detection annihilation rate, which is only a few orders of magnitude below the current limits.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
  3. [3]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
  4. [4]
    J. Chang, K. Cheung, H. Ishida, C.-T. Lu, M. Spinrath and Y.-L.S. Tsai, A supersymmetric electroweak scale seesaw model, JHEP 10 (2017) 039 [arXiv:1707.04374] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.S. Hagelin, G.L. Kane and S. Raby, Perhaps Scalar Neutrinos Are the Lightest Supersymmetric Partners, Nucl. Phys. B 241 (1984) 638 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L.E. Ibáñez, The Scalar Neutrinos as the Lightest Supersymmetric Particles and Cosmology, Phys. Lett. B 137 (1984) 160 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [INSPIRE].
  9. [9]
    D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Omega(b)/Omega(DM) puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].
  10. [10]
    C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Arina, F. Bazzocchi, N. Fornengo, J.C. Romao and J.W.F. Valle, Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett. 101 (2008) 161802 [arXiv:0806.3225] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K.-Y. Choi and O. Seto, Light Dirac right-handed sneutrino dark matter, Phys. Rev. D 88 (2013) 035005 [arXiv:1305.4322] [INSPIRE].
  13. [13]
    T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [INSPIRE].
  14. [14]
    T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [hep-ph/0612211] [INSPIRE].
  15. [15]
    J. McDonald, Right-handed sneutrino condensate cold dark matter and the baryon-to-dark matter ratio, JCAP 01 (2007) 001 [hep-ph/0609126] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    V. Page, Non-thermal right-handed sneutrino dark matter and the ΩDM /Ωb problem, JHEP 04 (2007) 021 [hep-ph/0701266] [INSPIRE].
  17. [17]
    H.-S. Lee, K.T. Matchev and S. Nasri, Revival of the thermal sneutrino dark matter, Phys. Rev. D 76 (2007) 041302 [hep-ph/0702223] [INSPIRE].
  18. [18]
    D.G. Cerdeno, C. Muñoz and O. Seto, Right-handed sneutrino as thermal dark matter, Phys. Rev. D 79 (2009) 023510 [arXiv:0807.3029] [INSPIRE].
  19. [19]
    L. Delle Rose, S. Khalil, S.J.D. King, C. Marzo, S. Moretti and C.S. Un, Naturalness and dark matter in the supersymmetric B-L extension of the standard model, Phys. Rev. D 96 (2017) 055004 [arXiv:1702.01808] [INSPIRE].
  20. [20]
    L. Delle Rose et al., Sneutrino Dark Matter in the BLSSM, JHEP 07 (2018) 100 [arXiv:1712.05232] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Delle Rose et al., Prospects for Sneutrino Dark Matter in the BLSSM, arXiv:1804.09470 [INSPIRE].
  22. [22]
    G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].
  24. [24]
    S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  25. [25]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Dimopoulos, S. Raby and F. Wilczek, Proton Decay in Supersymmetric Models, Phys. Lett. B 112 (1982) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P.S. Bhupal Dev, S. Mondal, B. Mukhopadhyaya and S. Roy, Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw, JHEP 09 (2012) 110 [arXiv:1207.6542] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Banerjee, P.S.B. Dev, S. Mondal, B. Mukhopadhyaya and S. Roy, Invisible Higgs Decay in a Supersymmetric Inverse Seesaw Model with Light Sneutrino Dark Matter, JHEP 10 (2013) 221 [arXiv:1306.2143] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Guo, Z. Kang, T. Li and Y. Liu, Higgs boson mass and complex sneutrino dark matter in the supersymmetric inverse seesaw models, JHEP 02 (2014) 080 [arXiv:1311.3497] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.K. Ghosh, S. Mondal and I. Saha, Confronting the Galactic Center Gamma Ray Excess With a Light Scalar Dark Matter, JCAP 02 (2015) 035 [arXiv:1405.0206] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Cao, X. Guo, Y. He, L. Shang and Y. Yue, Sneutrino DM in the NMSSM with inverse seesaw mechanism, JHEP 10 (2017) 044 [arXiv:1707.09626] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Gogoladze, B. He, A. Mustafayev, S. Raza and Q. Shafi, Effects of Neutrino Inverse Seesaw Mechanism on the Sparticle Spectrum in CMSSM and NUHM2, JHEP 05 (2014) 078 [arXiv:1401.8251] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z. Kang, J. Li, T. Li, T. Liu and J.M. Yang, The maximal U(1)L inverse seesaw from d = 5 operator and oscillating asymmetric Sneutrino dark matter, Eur. Phys. J. C 76 (2016) 270 [arXiv:1102.5644] [INSPIRE].
  34. [34]
    S.-L. Chen and Z. Kang, Oscillating asymmetric sneutrino dark matter from the maximally U(1)L supersymmetric inverse seesaw, Phys. Lett. B 761 (2016) 296 [arXiv:1512.08780] [INSPIRE].
  35. [35]
    S. Khalil, H. Okada and T. Toma, Right-handed Sneutrino Dark Matter in Supersymmetric B-L Model, JHEP 07 (2011) 026 [arXiv:1102.4249] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H. An, P.S.B. Dev, Y. Cai and R.N. Mohapatra, Sneutrino Dark Matter in Gauged Inverse Seesaw Models for Neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366] [INSPIRE].
  37. [37]
    D. Borah, Astrophysical Constraints on the scale of Left-Right Symmetry in Inverse Seesaw Models, J. Mod. Phys. 3 (2012) 1097 [arXiv:1204.6587] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    W. Abdallah and S. Khalil, Dark Matter in B-L supersymmetric Standard Model with inverse seesaw, JCAP 04 (2017) 016 [arXiv:1701.04436] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    V. De Romeri and M. Hirsch, Sneutrino Dark Matter in Low-scale Seesaw Scenarios, JHEP 12 (2012) 106 [arXiv:1209.3891] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Frank and Ö. Özdal, Exploring the supersymmetric U(1) BL× U(1) R model with dark matter, muon g − 2 and Z mass limits, Phys. Rev. D 97 (2018) 015012 [arXiv:1709.04012] [INSPIRE].
  41. [41]
    F. Staub, Sarah, arXiv:0806.0538 [INSPIRE].
  42. [42]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Fowlie et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].
  44. [44]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Edsjö and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of Relic Densities in the Early Universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Drees, F. Hajkarim and E.R. Schmitz, The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter, JCAP 06 (2015) 025 [arXiv:1503.03513] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  52. [52]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T, arXiv:1805.12562 [INSPIRE].
  54. [54]
    IceCube collaboration, M.G. Aartsen et al., Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore, Eur. Phys. J. C 77 (2017) 627 [arXiv:1705.08103] [INSPIRE].
  55. [55]
    C. Arina, S. Kulkarni and J. Silk, Monochromatic neutrino lines from sneutrino dark matter, Phys. Rev. D 92 (2015) 083519 [arXiv:1506.08202] [INSPIRE].
  56. [56]
    L.A. Cavasonza, H. Gast, M. Krämer, M. Pellen and S. Schael, Constraints on leptophilic dark matter from the AMS-02 experiment, Astrophys. J. 839 (2017) 36 [arXiv:1612.06634] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Physics Division, National Center for Theoretical SciencesHsinchuTaiwan
  3. 3.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan
  4. 4.Division of Quantum Phases & Devices, School of PhysicsKonkuk UniversitySeoulRepublic of Korea
  5. 5.Institute of Physics, Academia SinicaNangangTaiwan

Personalised recommendations