Skip to main content

The effective field theory of cosmological large scale structures


Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is \( c_s^2 \approx {1}{0^{{ - {6}}}}{c^{2}} \) and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. The predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ⋍ 0.24h Mpc−1.


  1. [1]

    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  2. [2]

    L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP 04 (2012) 024 [arXiv:1009.2093] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Weinberg, The quantum theory of fields. Vol. 2: modern applications, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  4. [4]

    T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Galaxy bias and non-linear structure formation in general relativity, JCAP 10 (2011) 031 [arXiv:1106.5507] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological non-linearities as an effective fluid, arXiv:1004.2488 [INSPIRE].

  6. [6]

    F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astro-ph/0112551] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. [7]

    B. Jain and E. Bertschinger, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J. 431 (1994) 495 [astro-ph/9311070] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. Shoji and E. Komatsu, Third-order perturbation theory with non-linear pressure, Astrophys. J. 700 (2009) 705 [arXiv:0903.2669] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D. Jeong and E. Komatsu, Perturbation theory reloaded: analytical calculation of non-linearity in baryonic oscillations in the real space matter power spectrum, Astrophys. J. 651 (2006) 619 [astro-ph/0604075] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. Crocce and R. Scoccimarro, Renormalized cosmological perturbation theory, Phys. Rev. D 73 (2006) 063519 [astro-ph/0509418] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    M. Crocce and R. Scoccimarro, Nonlinear evolution of baryon acoustic oscillations, Phys. Rev. D 77 (2008) 023533 [arXiv:0704.2783] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    T. Matsubara, Resumming cosmological perturbations via the Lagrangian picture: one-loop results in real space and in redshift space, Phys. Rev. D 77 (2008) 063530 [arXiv:0711.2521] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    P. McDonald, Dark matter clustering: a simple renormalization group approach, Phys. Rev. D 75 (2007) 043514 [astro-ph/0606028] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    A. Taruya and T. Hiramatsu, A closure theory for non-linear evolution of cosmological power spectra, arXiv:0708.1367 [INSPIRE].

  15. [15]

    K. Izumi and J. Soda, Renormalized Newtonian cosmic evolution with primordial non-gaussanity, Phys. Rev. D 76 (2007) 083517 [arXiv:0706.1604] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    S. Matarrese and M. Pietroni, Baryonic acoustic oscillations via the renormalization group, Mod. Phys. Lett. A 23 (2008) 25 [astro-ph/0702653] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    S. Matarrese and M. Pietroni, Resumming cosmic perturbations, JCAP 06 (2007) 026 [astro-ph/0703563] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    T. Nishimichi, H. Ohmuro, M. Nakamichi, A. Taruya, K. Yahata, et al., Characteristic scales of baryon acoustic oscillations from perturbation theory: non-linearity and redshift-space distortion effects, arXiv:0705.1589 [INSPIRE].

  19. [19]

    R. Takahashi, Third order density perturbation and one-loop power spectrum in a dark energy dominated universe, Prog. Theor. Phys. 120 (2008) 549 [arXiv:0806.1437] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  20. [20]

    J. Carlson, M. White and N. Padmanabhan, A critical look at cosmological perturbation theory techniques, Phys. Rev. D 80 (2009) 043531 [arXiv:0905.0479] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    A.L. Fitzpatrick, L. Senatore and M. Zaldarriaga, Contributions to the dark matter 3-pt function from the radiation era, JCAP 05 (2010) 004 [arXiv:0902.2814] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    K. Enqvist and G. Rigopoulos, Non-linear mode coupling and the growth of perturbations in LCDM, JCAP 03 (2011) 005 [arXiv:1008.2751] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Pietroni, G. Mangano, N. Saviano and M. Viel, Coarse-grained cosmological perturbation theory, JCAP 01 (2012) 019 [arXiv:1108.5203] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    S. Tassev and M. Zaldarriaga, The mildly non-linear regime of structure formation, JCAP 04 (2012) 013 [arXiv:1109.4939] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Tassev and M. Zaldarriaga, Estimating CDM particle trajectories in the mildly non-linear regime of structure formation. Implications for the density field in real and redshift space, arXiv:1203.5785 [INSPIRE].

  26. [26]

    S. Tassev and M. Zaldarriaga, Towards an optimal reconstruction of baryon oscillations, arXiv:1203.6066 [INSPIRE].

  27. [27]

    L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, arXiv:1203.6354 [INSPIRE].

  29. [29]

    G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    J.J. Carrasco, S. Foreman and L. Senatore 1.5 loops in the effective field theory for large scale structures, work in progress.

  31. [31]

    McBride et al., in preparation.

  32. [32]

    P.S. Behroozi, R.H. Wechsler, H.-Y. Wu, M.T. Busha, A.A. Klypin, et al., Gravitationally consistent halo catalogs and merger trees for precision cosmology, arXiv:1110.4370 [] [INSPIRE].

  33. [33]

    H. Martel and W. Freudling Second-order perturbation theory in Omega is not equal to Friedmann models, Astrophys. J. 371 (1991) 1.

    ADS  Article  Google Scholar 

  34. [34]

    F. Bernardeau, Skewness and kurtosis in large scale cosmic fields, Astrophys. J. 433 (1994) 1 [astro-ph/9312026] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    R. Scoccimarro, S. Colombi, J.N. Fry, J.A. Frieman, E. Hivon, et al., Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J. 496 (1998) 586 [astro-ph/9704075] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to John Joseph M. Carrasco.

Additional information

ArXiv ePrint: 1206.2926

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Carrasco, J.J.M., Hertzberg, M.P. & Senatore, L. The effective field theory of cosmological large scale structures. J. High Energ. Phys. 2012, 82 (2012).

Download citation


  • Cosmology of Theories beyond the SM
  • Stochastic Processes
  • Renormalization Regularization and Renormalons