Chern-Simons theory from M5-branes and calibrated M2-branes

  • Márk Mezei
  • Silviu S. Pufu
  • Yifan WangEmail author
Open Access
Regular Article - Theoretical Physics


We study a sector of the 5d maximally supersymmetric Yang-Mills theory on S5 consisting of 1/8-BPS Wilson loop operators contained within a great S3 inside S5. We conjecture that these observables are described by a 3d Chern Simons theory on S3, analytically continued to a pure imaginary Chern-Simons level. Therefore, the expectation values of these 5d Wilson loops compute knot invariants. We verify this conjecture in the weakly-coupled regime from explicit Feynman diagram computations. At strong coupling, these Wilson loop operators lift to 1/8-BPS surface operators in the 6d (2, 0) theory on S1 × S5. Using AdS/CFT, we show that these surface operators are dual to M2-branes subject to certain calibration conditions required in order to preserve supersymmetry. We compute the renormalized action of a large class of calibrated M2-branes and obtain a perfect match with the field theory prediction. Finally, we present a derivation of the 3d Chern-Simons theory from 5d super-Yang-Mills theory using supersymmetric localization, modulo a subtle issue that we discuss.


Brane Dynamics in Gauge Theories M-Theory Supersymmetric Gauge Theory Chern-Simons Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys.A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
  2. [2]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP10 (2011) 038 [arXiv:1105.4598] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP03 (2015) 117 [arXiv:1409.1937] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP03 (2018) 123 [arXiv:1710.08418] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J.A. Minahan and U. Naseer, One-loop tests of supersymmetric gauge theories on spheres, JHEP07 (2017) 074 [arXiv:1703.07435] [INSPIRE].
  7. [7]
    A. Gorantis, J.A. Minahan and U. Naseer, Analytic continuation of dimensions in supersymmetric localization, JHEP02 (2018) 070 [arXiv:1711.05669] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys.306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev.D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].
  10. [10]
    N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2on S 4, JHEP07 (2014) 001 [arXiv:1311.1508] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP05 (2014) 032 [arXiv:1207.4359] [INSPIRE].
  12. [12]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans supergravity from five-dimensional holograms, JHEP05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2from 2d YM and matrix models, JHEP10 (2010) 033 [arXiv:0906.1572] [INSPIRE].
  14. [14]
    S. Giombi and V. Pestun, The 1/2 BPSt Hooft loops in N = 4 SYM as instantons in 2d Yang-Mills, J. Phys.A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].
  15. [15]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP12 (2012) 067 [arXiv:0906.0638] [INSPIRE].
  17. [17]
    C. Closset et al., Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP10 (2012) 053 [arXiv:1205.4142] [INSPIRE].
  18. [18]
    E. Gerchkovitz et al., Correlation functions of Coulomb branch operators, JHEP01 (2017) 103 [arXiv:1602.05971] [INSPIRE].
  19. [19]
    M. Dedushenko, S.S. Pufu and R. Yacoby, A one-dimensional theory for Higgs branch operators, JHEP03 (2018) 138 [arXiv:1610.00740] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    H.-C. Kim and S. Kim, M 5-branes from gauge theories on the 5-sphere, JHEP05 (2013) 144 [arXiv:1206.6339] [INSPIRE].
  21. [21]
    H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M 5-branes, arXiv:1211.0144 [INSPIRE].
  22. [22]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric gauge theories on the five-sphere, Nucl. Phys.B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].
  23. [23]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories, J. Phys.A 50 (2017) 443014 [arXiv:1608.02966] [INSPIRE].
  25. [25]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold invariants, Commun. Math. Phys.253 (2004) 25 [hep-th/0207096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP02 (2004) 010 [hep-th/0211098] [INSPIRE].
  27. [27]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    E. Witten, Quantum field theory and the jones polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    E. Witten, Some comments on string dynamics, in the proceedings of Future perspectives in string theory (Strings95), March 13-18, Los Angeles, U.S.A. (1995), hep-th/9507121 [INSPIRE].
  30. [30]
    A. Strominger, Open p-branes, Phys. Lett.B 383 (1996) 44 [hep-th/9512059] [INSPIRE].
  31. [31]
    E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys.B 463 (1996) 383 [hep-th/9512219] [INSPIRE].
  32. [32]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett.B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
  33. [33]
    N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl.67 (1998) 158 [hep-th/9705117] [INSPIRE].
  34. [34]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP02 (2011) 011 [arXiv:1012.2880] [INSPIRE].
  35. [35]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M 5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP01 (2011) 083 [arXiv:1012.2882] [INSPIRE].
  36. [36]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Deconstructing (2, 0) proposals, Phys. Rev.D 88 (2013) 026007 [arXiv:1212.3337] [INSPIRE].
  37. [37]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys.325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Cecotti, C. Cordova and C. Vafa, Braids, walls and mirrors, arXiv:1110.2115 [INSPIRE].
  39. [39]
    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys.B 577 (2000) 419 [hep-th/9912123] [INSPIRE].
  40. [40]
    Y. Terashima and M. Yamazaki, SL(2, ℝ) Chern-Simons, Liouville and gauge theory on duality walls, JHEP08 (2011) 135 [arXiv:1103.5748] [INSPIRE].
  41. [41]
    Y. Terashima and M. Yamazaki, Semiclassical analysis of the 3d/3d relation, Phys. Rev.D 88 (2013) 026011 [arXiv:1106.3066] [INSPIRE].
  42. [42]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, Adv. Theor. Math. Phys.17 (2013) 975 [arXiv:1112.5179] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    D.V. Galakhov et al., Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation, Theor. Math. Phys.172 (2012) 939 [arXiv:1104.2589] [INSPIRE].
  44. [44]
    C. Beem, T. Dimofte and S. Pasquetti, Holomorphic blocks in three dimensions, JHEP12 (2014) 177 [arXiv:1211.1986] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    J. Yagi, 3d TQFT from 6d SCFT, JHEP08 (2013) 017 [arXiv:1305.0291] [INSPIRE].
  46. [46]
    D. Gang, E. Koh, S. Lee and J. Park, Superconformal index and 3d-3d correspondence for mapping cylinder/torus, JHEP01 (2014) 063 [arXiv:1305.0937] [INSPIRE].
  47. [47]
    C. Cordova and D.L. Jafferis, Complex Chern-Simons from M 5-branes on the squashed three-sphere, JHEP11 (2017) 119 [arXiv:1305.2891] [INSPIRE].
  48. [48]
    M. Bullimore and H.-C. Kim, The superconformal index of the (2, 0) theory with defects, JHEP05 (2015) 048 [arXiv:1412.3872] [INSPIRE].
  49. [49]
    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \)symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
  50. [50]
    G. Bossard et al., Integral invariants in maximally supersymmetric Yang-Mills theories, JHEP05 (2011) 021 [arXiv:1012.3142] [INSPIRE].
  51. [51]
    C.-M. Chang, Y.-H. Lin, Y. Wang and X. Yin, Deformations with maximal supersymmetries. Part 1: on-shell formulation, arXiv:1403.0545 [INSPIRE].
  52. [52]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Interpolating the Coulomb phase of little string theory, JHEP12 (2015) 022 [arXiv:1502.01751] [INSPIRE].
  53. [53]
    C. Cordova, T.T. Dumitrescu and X. Yin, Higher derivative terms, toroidal compactification and Weyl anomalies in six-dimensional (2, 0) theories, arXiv:1505.03850 [INSPIRE].
  54. [54]
    A. Dymarsky, S.S. Gubser, Z. Guralnik and J.M. Maldacena, Calibrated surfaces and supersymmetric Wilson loops, JHEP09 (2006) 057 [hep-th/0604058] [INSPIRE].
  55. [55]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP05 (2008) 017 [arXiv:0711.3226] [INSPIRE].
  56. [56]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP07 (2010) 088 [arXiv:0905.0665] [INSPIRE].
  57. [57]
    M. Mezei, S.S. Pufu and Y. Wang, A 2d/1d holographic duality, arXiv:1703.08749 [INSPIRE].
  58. [58]
    F. Bonetti and L. Rastelli, Supersymmetric localization in AdS 5and the protected chiral algebra, JHEP08 (2018) 098 [arXiv:1612.06514] [INSPIRE].Google Scholar
  59. [59]
    J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP03 (2015) 155 [arXiv:1502.07154] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  60. [60]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP02 (2008) 064 [arXiv:0801.1435] [INSPIRE].
  61. [61]
    Y. Tachikawa, On S-duality of 5d super Yang-Mills on S 1, JHEP11 (2011) 123 [arXiv:1110.0531] [INSPIRE].
  62. [62]
    Y. Wang and D. Xie, Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6d (2, 0) theories, Phys. Rev.D 100 (2019) 025001 [arXiv:1805.08839] [INSPIRE].
  63. [63]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys.B 643 (2002) 157 [hep-th/0205160] [INSPIRE].
  64. [64]
    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].
  65. [65]
    I.T. Drummond and G.M. Shore, Dimensional regularization of massless quantum electrodynamics in spherical space-time. 1., Annals Phys.117 (1979) 89 [INSPIRE].
  66. [66]
    D. DeTurck and H. Gluck, The Gauss linking integral on the 3-sphere and in hyperbolic 3-space, math/0406276.
  67. [67]
    H. Osborn and G.M. Shore, Correlation functions of the energy momentum tensor on spaces of constant curvature, Nucl. Phys.B 571 (2000) 287 [hep-th/9909043] [INSPIRE].
  68. [68]
    E. Guadagnini, M. Martellini and M. Mintchev, Wilson lines in Chern-Simons theory and link invariants, Nucl. Phys.B 330 (1990) 575 [INSPIRE].
  69. [69]
    E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math.50 (2011) 347 [arXiv:1001.2933] [INSPIRE].
  70. [70]
    M. Mariño, Chern-Simons theory, matrix models and topological strings, Int. Ser. Monogr. Phys.131 (2005) 1 [INSPIRE].
  71. [71]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  72. [72]
    N. Bobev, P. Bomans and F.F. Gautason, Spherical branes, JHEP08 (2018) 029 [arXiv:1805.05338] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett.80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys.B 546 (1999) 52 [hep-th/9901021] [INSPIRE].
  75. [75]
    M. Taylor, Anomalies, counterterms and the N = 0 Polchinski-Strassler solutions, hep-th/0103162 [INSPIRE].
  76. [76]
    M. Taylor, Higher dimensional formulation of counterterms, hep-th/0110142 [INSPIRE].
  77. [77]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev.D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].
  78. [78]
    V.I. Arnol’d, The geometry of spherical curves and the algebra of quaternions, Russ. Math. Surv.50 (1995) 1.CrossRefGoogle Scholar
  79. [79]
    P. Røgen, Gauss-Bonnets theorem and closed frenet frames, Geom. Ded.73 (1998) 295.Google Scholar
  80. [80]
    J.A. Minahan, A. Nedelin and M. Zabzine, 5D super Yang-Mills theory and the correspondence to AdS 7/CFT 6, J. Phys.A 46 (2013) 355401 [arXiv:1304.1016] [INSPIRE].
  81. [81]
    G. Giasemidis and M. Tierz, Torus knot polynomials and SUSY Wilson loops, Lett. Math. Phys.104 (2014) 1535 [arXiv:1401.8171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    J.M.F. Labastida and M. Mariño, The HOMFLY polynomial for torus links from Chern-Simons gauge theory, Int. J. Mod. Phys.A 10 (1995) 1045 [hep-th/9402093] [INSPIRE].
  83. [83]
    X.S. Lin and H. Zheng, On the Hecke algebras and the colored HOMFLY polynomial, math/0601267.
  84. [84]
    S. Stevan, Chern-Simons invariants of torus links, Ann. Henri Poincaré 11 (2010) 1201 [arXiv:1003.2861] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev.D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].
  86. [86]
    Y. Pan and W. Peelaers, Chiral algebras, localization and surface defects, JHEP02 (2018) 138 [arXiv:1710.04306] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    J.M. Camino, A. Paredes and A.V. Ramallo, Stable wrapped branes, JHEP05 (2001) 011 [hep-th/0104082] [INSPIRE].
  88. [88]
    B. Chen, W. He, J.-B. Wu and L. Zhang, M 5-branes and Wilson surfaces, JHEP08 (2007) 067 [arXiv:0707.3978] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    H. Mori and S. Yamaguchi, M 5-branes and Wilson surfaces in AdS 7/CFT 6correspondence, Phys. Rev.D 90 (2014) 026005 [arXiv:1404.0930] [INSPIRE].
  90. [90]
    S. Lee and M. Yamazaki, 3d Chern-Simons theory from M 5-branes, JHEP12 (2013) 035 [arXiv:1305.2429] [INSPIRE].
  91. [91]
    M. Günaydin, P. van Nieuwenhuizen and N.P. Warner, General construction of the unitary representations of Anti-de Sitter superalgebras and the spectrum of the S 4compactification of eleven-dimensional supergravity, Nucl. Phys.B 255 (1985) 63 [INSPIRE].
  92. [92]
    A. Dymarsky and V. Pestun, Supersymmetric Wilson loops in N = 4 SYM and pure spinors, JHEP04 (2010) 115 [arXiv:0911.1841] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Simons Center for Geometry and Physics, SUNYStony BrookU.S.A.
  2. 2.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.

Personalised recommendations