Disorder and mimesis at hadron colliders

  • Raffaele Tito D’Agnolo
  • Matthew LowEmail author
Open Access
Regular Article - Theoretical Physics


We discuss how systems with a large number of degrees of freedom and disorder in their mass matrix can play a role in particle physics. We derive results on their mass spectra using, where applicable, QFT techniques. We study concrete realizations of these scenarios in the context of the LHC and HL-LHC, showing that collider events with a large number of soft b-quark jets can be common. Such final states can hide these models from current searches at the LHC. This motivates the ongoing effort aimed at lowering trigger thresholds and expanding data scouting.


Beyond Standard Model 1/N Expansion 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
  4. [4]
  5. [5]
    CMS collaboration, Data Parking and Data Scouting at the CMS Experiment, CERN-CMS-DP-2012-022.
  6. [6]
    CMS collaboration, Data Scouting: A New Trigger Paradigm, in 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai, China, 15-20 May 2017 (2017) [arXiv:1708.06925] [INSPIRE].
  7. [7]
    J. Duarte, Fast Reconstruction and Data Scouting, in 4th International Workshop Connecting The Dots 2018 (CTD2018), Seattle, Washington, U.S.A., 20-22 March 2018 (2018) [FERMILAB-CONF-18-370] [arXiv:1808.00902] [INSPIRE].
  8. [8]
    D. Anderson, Data Scouting in CMS, PoS(ICHEP2016) 190 [INSPIRE].
  9. [9]
    B. Kreis, Particle Flow and PUPPI in the Level-1 Trigger at CMS for the HL-LHC, in 4th International Workshop Connecting The Dots 2018 (CTD2018), Seattle, Washington, U.S.A., 20-22 March 2018 (2018) [FERMILAB-CONF-18-428] [arXiv:1808.02094] [INSPIRE].
  10. [10]
    G. Petrucciani, Particle flow at level 1, presented at Triggering on new physics at the HL-LHC, (2018).
  11. [11]
    G. Stark, R. Camacho Toro and D.W. Miller, The Level-1 Calorimeter Global Feature Extractor (gFEX) Boosted Object Trigger for the Phase-I Upgrade of the ATLAS Experiment, PoS (ICHEP2016) 1055 [INSPIRE].
  12. [12]
    ATLAS collaboration, Letter of Intent for the Phase-II Upgrade of the ATLAS Experiment, CERN-LHCC-2012-022.
  13. [13]
    M. Shochet, L. Tompkins, V. Cavaliere, P. Giannetti, A. Annovi and G. Volpi, Fast TracKer (FTK) Technical Design Report, CERN-LHCC-2013-007.
  14. [14]
    J. Halverson and P. Langacker, TASI Lectures on Remnants from the String Landscape, PoS (TASI2017)019 (2018) [arXiv:1801.03503] [INSPIRE].
  15. [15]
    M. Cvetič, P. Langacker and G. Shiu, Phenomenology of a three family standard like string model, Phys. Rev.D 66 (2002) 066004 [hep-ph/0205252] [INSPIRE].
  16. [16]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  17. [17]
    P. Meade and H. Ramani, Unrestored Electroweak Symmetry, Phys. Rev. Lett.122 (2019) 041802 [arXiv:1807.07578] [INSPIRE].
  18. [18]
    I. Baldes and G. Servant, High scale electroweak phase transition: baryogenesis & symmetry non-restoration, JHEP10 (2018) 053 [arXiv:1807.08770] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Glioti, R. Rattazzi and L. Vecchi, Electroweak Baryogenesis above the Electroweak Scale, JHEP04 (2019) 027 [arXiv:1811.11740] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  21. [21]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP07 (2008) 008 [arXiv:0712.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.J. Strassler, On the Phenomenology of Hidden Valleys with Heavy Flavor, arXiv:0806.2385 [INSPIRE].
  23. [23]
    M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett.B 661 (2008) 263 [hep-ph/0605193] [INSPIRE].
  24. [24]
    M.J. Strassler, Why Unparticle Models with Mass Gaps are Examples of Hidden Valleys, arXiv:0801.0629 [INSPIRE].
  25. [25]
    S. Knapen, S. Pagan Griso, M. Papucci and D.J. Robinson, Triggering Soft Bombs at the LHC, JHEP08 (2017) 076 [arXiv:1612.00850] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.R. Dienes, J. Fennick, J. Kumar and B. Thomas, Randomness in the Dark Sector: Emergent Mass Spectra and Dynamical Dark Matter Ensembles, Phys. Rev.D 93 (2016) 083506 [arXiv:1601.05094] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K.R. Dienes and B. Thomas, Dynamical Dark Matter: I. Theoretical Overview, Phys. Rev.D 85 (2012) 083523 [arXiv:1106.4546] [INSPIRE].
  28. [28]
    K.R. Dienes and B. Thomas, Dynamical Dark Matter: II. An Explicit Model, Phys. Rev.D 85 (2012) 083524 [arXiv:1107.0721] [INSPIRE].
  29. [29]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, The Statistics of Peaks of Gaussian Random Fields, Astrophys. J.304 (1986) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.J. Bray and D.S. Dean, Statistics of critical points of Gaussian fields on large-dimensional spaces, Phys. Rev. Lett.98 (2007) 150201 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Easther, A.H. Guth and A. Masoumi, Counting Vacua in Random Landscapes, arXiv:1612.05224 [INSPIRE].
  33. [33]
    M. Dine and S. Paban, Tunneling in Theories with Many Fields, JHEP10 (2015) 088 [arXiv:1506.06428] [INSPIRE].
  34. [34]
    S. Coleman, Aspects of Symmetry, Cambridge University Press, Cambridge, U.K. (1985).CrossRefGoogle Scholar
  35. [35]
    T. Cohen, R.T. D’Agnolo and M. Low, Freezing in the hierarchy problem, Phys. Rev.D 99 (2019) 031702 [arXiv:1808.02031] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].ADSGoogle Scholar
  37. [37]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb 1of proton-proton collision data at \( \sqrt{s} \)= 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031.
  38. [38]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \)= 13 TeV, Eur. Phys. J.C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].Google Scholar
  39. [39]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev.D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP11 (2015) 158 [arXiv:1505.05488] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1of proton-proton collisions collected at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Phys. Lett.B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].ADSGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for heavy resonances decaying into W W in the eνμν final state in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].ADSGoogle Scholar
  43. [43]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and ℓ + ν ν final states using proton-proton collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  44. [44]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  45. [45]
    CMS collaboration, Search for additional neutral Higgs bosons decaying to a pair of tau leptons in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-14-029.
  46. [46]
    ATLAS collaboration, A search for pair-produced resonances in four-jet final states at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 250 [arXiv:1710.07171] [INSPIRE].
  47. [47]
    CMS collaboration, Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at \( \sqrt{s} \)= 13 TeV, Phys. Rev.D 98 (2018) 112014 [arXiv:1808.03124] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CMS collaboration, Search for long-lived particles with displaced vertices in multijet events in proton-proton collisions at \( \sqrt{s} \)= 13 TeV, Phys. Rev.D 98 (2018) 092011 [arXiv:1808.03078] [INSPIRE].ADSGoogle Scholar
  49. [49]
    CMS collaboration, Search for Multijet Resonances in the 8-jet Final State, CMS-PAS-EXO-11-075.
  50. [50]
    E. Wigner, Characteristic Vectors of Bordered Matrices with Infinite Dimensions, Annals Math.62 (1955) 548.MathSciNetCrossRefGoogle Scholar
  51. [51]
    E. Wigner, On the Distribution of the Roots of Certain Symmetric Matrices, Annals Math.67 (1958) 325.MathSciNetCrossRefGoogle Scholar
  52. [52]
    F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys.3 (1962) 140 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S. O’Rourke, V. Vu and K. Wang, Eigenvectors of random matrices: A survey, arXiv:1601.03678.
  54. [54]
    G. Livan, M. Novaes and P. Vivo, Introduction to Random Matrices — Theory and Practice, arXiv:1712.07903.
  55. [55]
    A. Zee, Quantum field theory in a nutshell, Princeton University Press (2003).Google Scholar
  56. [56]
    P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev.109 (1958) 1492 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    I.Z. Rothstein, Gravitational Anderson Localization, Phys. Rev. Lett.110 (2013) 011601 [arXiv:1211.7149] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    N. Craig and D. Sutherland, Exponential Hierarchies from Anderson Localization in Theory Space, Phys. Rev. Lett.120 (2018) 221802 [arXiv:1710.01354] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Green, Disorder in the Early Universe, JCAP03 (2015) 020 [arXiv:1409.6698] [INSPIRE].
  60. [60]
    R. Brandenberger and W. Craig, Towards a New Proof of Anderson Localization, Eur. Phys. J.C 72 (2012) 1881 [arXiv:0805.4217] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    V. Zanchin, A. Maia Jr., W. Craig and R.H. Brandenberger, Reheating in the presence of noise, Phys. Rev.D 57 (1998) 4651 [hep-ph/9709273] [INSPIRE].
  62. [62]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
  64. [64]
    V. Marchenko and L. Pastur, Distribution of eigenvalues for some sets of random matrices, Math. USSR-Sb1 (1967) 457.CrossRefGoogle Scholar
  65. [65]
    X. Lu and H. Murayama, Universal Asymptotic Eigenvalue Distribution of Large N Random Matrices — A Direct Diagrammatic Proof to Marchenko-Pastur Law, arXiv:1410.3503 [INSPIRE].
  66. [66]
    E. Brézin and A. Zee, Correlation Functions in Disordered Systems, Phys. Rev.E 49 (1994) 2588 [cond-mat/9310012] [INSPIRE].
  67. [67]
    G.W.G. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices, vol. 200, Cambridge University Press (2010).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  2. 2.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  3. 3.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations