Advertisement

Probing transverse-momentum distributions with groomed jets

  • Daniel Gutierrez-Reyes
  • Yiannis MakrisEmail author
  • Varun Vaidya
  • Ignazio Scimemi
  • Lorenzo Zoppi
Open Access
Regular Article - Theoretical Physics

Abstract

We present the transverse momentum spectrum of groomed jets in di-jet events for e+e collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of non-global logarithms and underlying event. At the same time, by reducing the final state hadronization effects, it provides a clean access to the non-perturbative part of the evolution of transverse momentum dependent (TMD) distributions. In SIDIS experiments we look at the transverse momentum of the groomed jet measured w.r.t. the incoming hadron in the Breit frame. Because the final state hadronization effects are significantly reduced, the SIDIS case allows to probe the TMD parton distribution functions. We discuss the sources of non-perturbative effects in the low transverse momentum region including novel (but small) effects that arise due to grooming. We derive a factorization theorem within SCET and resum any large logarithm in the measured transverse momentum up to NNLL accuracy using the ζ-prescription as implemented in the artemide package and provide a comparison with simulations.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.32 (2011) 1 [INSPIRE].
  2. [2]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q TAnd Transverse Momentum Distributions On-The-Light-Cone, JHEP07 (2012) 002 [arXiv:1111.4996] [INSPIRE].
  3. [3]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev.D 90 (2014) 014003 [arXiv:1402.0869] [INSPIRE].
  4. [4]
    J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP07 (2014) 110 [arXiv:1405.2080] [INSPIRE].
  5. [5]
    A. Vladimirov, Structure of rapidity divergences in multi-parton scattering soft factors, JHEP04 (2018) 045 [arXiv:1707.07606] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    D. Neill, I. Scimemi and W.J. Waalewijn, Jet axes and universal transverse-momentum-dependent fragmentation, JHEP04 (2017) 020 [arXiv:1612.04817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions with jets, Phys. Rev. Lett.121 (2018) 162001 [arXiv:1807.07573] [INSPIRE].
  8. [8]
    D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions in e +e and semi-inclusive deep-inelastic scattering using jets, arXiv:1904.04259 [INSPIRE].
  9. [9]
    D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP04 (2014) 013 [arXiv:1310.7584] [INSPIRE].
  10. [10]
    Y. Makris, D. Neill and V. Vaidya, Probing Transverse-Momentum Dependent Evolution With Groomed Jets, JHEP07 (2018) 167 [arXiv:1712.07653] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Makris and V. Vaidya, Transverse Momentum Spectra at Threshold for Groomed Heavy Quark Jets, JHEP10 (2018) 019 [arXiv:1807.09805] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative Corrections to Soft Drop Jet Mass, arXiv:1906.11843 [INSPIRE].
  13. [13]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  14. [14]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev.D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
  17. [17]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K tclustering algorithms for hadron hadron collisions, Nucl. Phys.B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  19. [19]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998-1999, pp. 270-279, (1998), hep-ph/9907280 [INSPIRE].
  20. [20]
    M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s} \) = 300 GeV, Ph.D. Thesis, Aachen, Tech. Hochsch., (2000).Google Scholar
  21. [21]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Salam, \( {E}_t^{\infty } \)Scheme, unpublished.Google Scholar
  23. [23]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP04 (2014) 017 [arXiv:1401.2158] [INSPIRE].
  24. [24]
    S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP07 (2017) 132 [arXiv:1704.02210] [INSPIRE].
  25. [25]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev.D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev.D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].
  28. [28]
    Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett.118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
  29. [29]
    A.A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys. Rev. Lett.118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].
  30. [30]
    I. Scimemi and A. Vladimirov, Power corrections and renormalons in Transverse Momentum Distributions, JHEP03 (2017) 002 [arXiv:1609.06047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP09 (2016) 004 [arXiv:1604.07869] [INSPIRE].
  32. [32]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP08 (2018) 003 [arXiv:1803.11089] [INSPIRE].
  34. [34]
    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP06 (2014) 155 [arXiv:1403.6451] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in q Tspectra of Drell-Yan and Z-boson production, JHEP11 (2014) 098 [arXiv:1407.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.G. Echevarria, A. Idilbi, A. Schäfer and I. Scimemi, Model-Independent Evolution of Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL, Eur. Phys. J.C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett.108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].
  38. [38]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys.B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  39. [39]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett.B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].
  40. [40]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett.102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].
  41. [41]
    A. Vogt, F. Herzog, S. Moch, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order, PoS(LL2018)05 (2018) [arXiv:1808.08981] [INSPIRE].
  42. [42]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev.D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].
  43. [43]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP07 (2016) 064 [arXiv:1603.09338] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Kang, C. Lee and I.W. Stewart, Using 1-Jettiness to Measure 2 Jets in DIS 3 Ways, Phys. Rev.D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].
  45. [45]
    V. Bertone, I. Scimemi and A. Vladimirov, Extraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson production, JHEP06 (2019) 028 [arXiv:1902.08474] [INSPIRE].
  46. [46]
    M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys.B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].
  47. [47]
    G.P. Korchemsky and G.F. Sterman, Nonperturbative corrections in resummed cross-sections, Nucl. Phys.B 437 (1995) 415 [hep-ph/9411211] [INSPIRE].
  48. [48]
    G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, AIP Conf. Proc.407 (1997) 988 [hep-ph/9708346] [INSPIRE].
  49. [49]
    M. Beneke, V.M. Braun and L. Magnea, Phenomenology of power corrections in fragmentation processes in e +e annihilation, Nucl. Phys.B 497 (1997) 297 [hep-ph/9701309] [INSPIRE].
  50. [50]
    T. Becher and G. Bell, Enhanced nonperturbative effects through the collinear anomaly, Phys. Rev. Lett.112 (2014) 182002 [arXiv:1312.5327] [INSPIRE].
  51. [51]
  52. [52]
  53. [53]
    I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J.C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Física Teórica and IPARCOSUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Theoretical Division, MS B283, Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics University of AmsterdamAmsterdamThe Netherlands
  4. 4.Nikhef, Theory GroupAmsterdamThe Netherlands

Personalised recommendations