Advertisement

Linearized field equations of gauge fields from the entanglement first law

  • Kenta Hasegawa
  • Yoshiaki TaniiEmail author
Open Access
Article

Abstract

In the context of the AdS/CFT correspondence linearized field equations of vector and antisymmetric tensor gauge fields around an AdS background are obtained from the entanglement first law of CFTs. The holographic charged entanglement entropy contains a term depending on the gauge field in addition to the Ryu-Takayanagi formula.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.931 (2017) pp.1 [arXiv:1609.01287] [INSPIRE].
  8. [8]
    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys.90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev.D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].
  10. [10]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP08 (2013) 102 [arXiv:1305.2728] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP04 (2014) 195 [arXiv:1308.3716] [INSPIRE].
  12. [12]
    J. Bhattacharya and T. Takayanagi, Entropic Counterpart of Perturbative Einstein Equation, JHEP10 (2013) 219 [arXiv:1308.3792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP03 (2014) 051 [arXiv:1312.7856] [INSPIRE].
  14. [14]
    B. Swingle and M. Van Raamsdonk, Universality of Gravity from Entanglement, arXiv:1405.2933 [INSPIRE].
  15. [15]
    D. Kastor, S. Ray and J. Traschen, Chemical Potential in the First Law for Holographic Entanglement Entropy, JHEP11 (2014) 120 [arXiv:1409.3521] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of Gravitational Systems from Entanglement of Conformal Field Theories, Phys. Rev. Lett.114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Jacobson, Entanglement Equilibrium and the Einstein Equation, Phys. Rev. Lett.116 (2016) 201101 [arXiv:1505.04753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A.J. Speranza, Entanglement entropy of excited states in conformal perturbation theory and the Einstein equation, JHEP04 (2016) 105 [arXiv:1602.01380] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    D. Kastor, S. Ray and J. Traschen, Extended First Law for Entanglement Entropy in Lovelock Gravity, Entropy18 (2016) 212 [arXiv:1604.04468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement chemistry, Phys. Rev.D 95 (2017) 106015 [arXiv:1605.00595] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    B. Mosk, Holographic equivalence between the first law of entanglement entropy and the linearized gravitational equations, Phys. Rev.D 94 (2016) 126001 [arXiv:1608.06292] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, Equivalent Equations of Motion for Gravity and Entropy, JHEP02 (2017) 004 [arXiv:1608.06282] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear Gravity from Entanglement in Conformal Field Theories, JHEP08 (2017) 057 [arXiv:1705.03026] [INSPIRE].
  24. [24]
    P. Paul and P. Roy, Linearized Einstein’s Equation around pure BTZ from Entanglement Thermodynamics, arXiv:1803.06484 [INSPIRE].
  25. [25]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP08 (2013) 060 [arXiv:1305.3182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers and T. Sierens, Holographic Charged Renyi Entropies, JHEP12 (2013) 059 [arXiv:1310.4180] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  32. [32]
    S. Gao and R.M. Wald, The ‘Physical process’ version of the first law and the generalized second law for charged and rotating black holes, Phys. Rev.D 64 (2001) 084020 [gr-qc/0106071] [INSPIRE].
  33. [33]
    S. Gao, The First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories, Phys. Rev. D 68 (2003) 044016 [gr-qc/0304094] [INSPIRE].
  34. [34]
    V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev.D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
  35. [35]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys.B 633 (2002) 3 [hep-th/0111246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.G. Avery and B.U.W. Schwab, Noether’s second theorem and Ward identities for gauge symmetries, JHEP02 (2016) 031 [arXiv:1510.07038] [INSPIRE].
  37. [37]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    S.A. Hartnoll and D. Radicevic, Holographic order parameter for charge fractionalization, Phys. Rev.D 86 (2012) 066001 [arXiv:1205.5291] [INSPIRE].ADSGoogle Scholar
  40. [40]
    I. Bakhmatov, N.S. Deger, J. Gutowski, E. Ó. Colgáin and H. Yavartanoo, Calibrated Entanglement Entropy, JHEP07 (2017) 117 [arXiv:1705.08319] [INSPIRE].
  41. [41]
    V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev.D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].ADSGoogle Scholar
  42. [42]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev.D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Division of Material Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan

Personalised recommendations