Eigenstate thermalization hypothesis and approximate quantum error correction

  • Ning Bao
  • Newton ChengEmail author
Open Access
Regular Article - Theoretical Physics


The eigenstate thermalization hypothesis (ETH) is a powerful conjecture for understanding how statistical mechanics emerges in a large class of many-body quantum systems. It has also been interpreted in a CFT context, and, in particular, holographic CFTs are expected to satisfy ETH. Recently, it was observed that the ETH condition corresponds to a necessary and sufficient condition for an approximate quantum error correcting code (AQECC), implying the presence of AQECCs in systems satisfying ETH. In this paper, we explore the properties of ETH as an error correcting code and show that there exists an explicit universal recovery channel for the code. Based on the analysis, we discuss a generalization that all chaotic theories contain error correcting codes. We then specialize to AdS/CFT to demonstrate the possibility of total bulk reconstruction in black holes with a well-defined macroscopic geometry. When combined with the existing AdS/CFT error correction story, this shows that black holes are enormously robust against erasure errors.


AdS-CFT Correspondence Black Holes in String Theory Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Akers and P. Rath, Holographic Renyi entropy from quantum error correction, JHEP05 (2019) 052 [arXiv:1811.05171] [INSPIRE].
  5. [5]
    N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond toy models: distilling tensor networks in full AdS/CFT, arXiv:1812.01171 [INSPIRE].
  6. [6]
    E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP10 (2013) 107 [arXiv:1211.6913] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Almheiri, Holographic quantum error correction and the projected black hole interior, arXiv:1810.02055 [INSPIRE].
  8. [8]
    F.G.S.L. Brandao, E. Crosson, M.B. Şahinoğlu and J. Bowen, Quantum error correcting codes in eigenstates of translation-invariant spin chains, arXiv:1710.04631 [INSPIRE].
  9. [9]
    P. Hayden, M. Horodecki, A. Winter and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn.15 (2008) 7 [quant-ph/0702005].MathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Horodecki, S. Lloyd and A. Winter, Quantum coding theorem from privacy and distinguishability, Open Syst. Inf. Dyn.15 (2008) 47 [quant-ph/0702006].MathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Hayden, P. Shor and A. Winter, Random quantum codes from gaussian ensembles and an uncertainty relation, Open Syst. Inf. Dyn.15 (2008) 71 arXiv:0712.0975.
  12. [12]
    P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP02 (2016) 004 [arXiv:1511.04021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    B. Yoshida, Soft mode and interior operator in Hayden-Preskill thought experiment, arXiv:1812.07353 [INSPIRE].
  15. [15]
    B. Yoshida, Firewalls vs. scrambling, arXiv:1902.09763 [INSPIRE].
  16. [16]
    L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys.65 (2016) 239 [arXiv:1509.06411].ADSCrossRefGoogle Scholar
  17. [17]
    J. Deutsch, Eigenstate thermalization hypothesis, Rept. Prog. Phys.81 (2018) 082001 [arXiv:1805.01616].
  18. [18]
    J.R. Garrison and T. Grover, Does a single eigenstate encode the full Hamiltonian?, Phys. Rev.X 8 (2018) 021026 [arXiv:1503.00729] [INSPIRE].
  19. [19]
    A. Dymarsky, N. Lashkari and H. Liu, Subsystem ETH, Phys. Rev.E 97 (2018) 012140 [arXiv:1611.08764] [INSPIRE].
  20. [20]
    N. Lashkari, A. Dymarsky and H. Liu, Universality of quantum information in chaotic CFTs, JHEP03 (2018) 070 [arXiv:1710.10458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Knill and R. Laflamme, A theory of quantum error correcting codes, Phys. Rev.A 55 (2000) 900 [quant-ph/9604034].
  22. [22]
    C. Bény and O. Oreshkov, General conditions for approximate quantum error correction and near-optimal recovery channels, Phys. Rev. Lett.104 (2010) 120501 [arXiv:0907.5391].
  23. [23]
    B. Schumacher, Sending entanglement through noisy quantum channels, Phys. Rev.A 54 (1996) 2614 [quant-ph/9604023].
  24. [24]
    C. Bény and O. Oreshkov, Approximate simulation of quantum channels, Phys. Rev.A 84 (2011) 022333 [arXiv:1103.0649].
  25. [25]
    M.M. Wilde, Recoverability in quantum information theory, Proc. Roy. Soc. Lond.A 471 (2015) 20150338 [arXiv:1505.04661] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Junge et al., Universal recovery maps and approximate sufficiency of quantum relative entropy, Ann. Henri Poincaré19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].
  27. [27]
    P. Faist et al., Continuous symmetries and approximate quantum error correction, arXiv:1902.07714 [INSPIRE].
  28. [28]
    M.P. Woods and Á.M. Alhambra, Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames, arXiv:1902.07725 [INSPIRE].
  29. [29]
    Y. Hikida, Y. Kusuki and T. Takayanagi, Eigenstate thermalization hypothesis and modular invariance of two-dimensional conformal field theories, Phys. Rev.D 98 (2018) 026003 [arXiv:1804.09658] [INSPIRE].
  30. [30]
    E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, Phys. Rev.D 98 (2018) 126015 [arXiv:1804.07924] [INSPIRE].
  31. [31]
    S. Datta, P. Kraus and B. Michel, Typicality and thermality in 2d CFT, JHEP07 (2019) 143 [arXiv:1904.00668] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    F. Pastawski and J. Preskill, Code properties from holographic geometries, Phys. Rev.X 7 (2017) 021022 [arXiv:1612.00017] [INSPIRE].
  33. [33]
    J. Cotler et al., Entanglement wedge reconstruction via universal recovery channels, Phys. Rev.X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].
  34. [34]
    D. Anninos et al., Hot halos and galactic glasses, JHEP01 (2012) 003 [arXiv:1108.5821] [INSPIRE].
  35. [35]
    D. Anninos et al., Supergoop dynamics, JHEP03 (2013) 081 [arXiv:1205.1060] [INSPIRE].
  36. [36]
    D. Anninos, T. Anous, F. Denef and L. Peeters, Holographic vitrification, JHEP04 (2015) 027 [arXiv:1309.0146] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    B.D. Chowdhury, D.R. Mayerson and B. Vercnocke, Phases of non-extremal multi-centered bound states, JHEP12 (2013) 054 [arXiv:1307.5846] [INSPIRE].
  38. [38]
    N. Bao and H. Ooguri, Distinguishability of black hole microstates, Phys. Rev.D 96 (2017) 066017 [arXiv:1705.07943] [INSPIRE].
  39. [39]
    S. Choi, Y. Bao, X.-L. Qi and E. Altman, Quantum error correction and entanglement phase transition in random unitary circuits with projective measurements, arXiv:1903.05124 [INSPIRE].
  40. [40]
    G. Biroli, C. Kollath and A. Läuchli, Effect of rare fluctuations on the thermalization of isolated quantum systems, Phys. Rev. Lett.105 (2010) 250401 [arXiv:0907.3731].
  41. [41]
    M. Mueller, E. Adlam, L. Masanes and N. Wiebe, Thermalization and canonical typicality in translation-invariant quantum lattice systems, Commun. Math Phys.340 (2011) 499 [arXiv:1312.7420].
  42. [42]
    J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP11 (2017) 149 [arXiv:1707.08013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    L. Foini and J. Kurchan, Eigenstate thermalization hypothesis and out of time order correlators, Phys. Rev.E 99 (2019) 042139 [arXiv:1803.10658] [INSPIRE].
  44. [44]
    Q. Zhuang, T. Schuster, B. Yoshida and N.Y. Yao, Scrambling and complexity in phase space, Phys. Rev.A 99 (2019) 062334 [arXiv:1902.04076] [INSPIRE].
  45. [45]
    J. De Boer et al., Probing typical black hole microstates, arXiv:1901.08527 [INSPIRE].
  46. [46]
    L. Nie, M. Nozaki, S. Ryu and M.T. Tan, Signature of quantum chaos in operator entanglement in 2d CFTs, arXiv:1812.00013 [INSPIRE].
  47. [47]
    T. Anous and J. Sonner, Phases of scrambling in eigenstates, SciPost Phys.7 (2019) 003 [arXiv:1903.03143] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Jensen, Scrambling in nearly thermalized states at large central charge, arXiv:1906.05852 [INSPIRE].
  49. [49]
    M.J. Kang and D.K. Kolchmeyer, Holographic relative entropy in infinite-dimensional Hilbert spaces, arXiv:1811.05482 [INSPIRE].
  50. [50]
    A. Jahn, M. Gluza, F. Pastawski and J. Eisert, Majorana dimers and holographic quantum error-correcting codes, arXiv:1905.03268 [INSPIRE].
  51. [51]
    R.J. Harris, N.A. McMahon, G.K. Brennen and T.M. Stace, Calderbank-Shor-Steane holographic quantum error-correcting codes, Phys. Rev.A 98 (2018) 052301 [arXiv:1806.06472] [INSPIRE].
  52. [52]
    C. Bény, A. Kempf and D. Kribs, Quantum error correction on infinite-dimensional Hilbert spaces, J. Math. Phys.50 (2009) 062108 [arXiv:0811.0421].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Lidar and T. Brun, Quantum error correction, Cambridge University Press, Cambridge U.K. (2013).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Berkeley Center for Theoretical PhysicsBerkeleyU.S.A.
  2. 2.Computational Science Initiative, Brookhaven National LabUptonU.S.A.

Personalised recommendations