Advertisement

Hall viscosity in a strongly coupled magnetized plasma

  • Carlos HoyosEmail author
  • Francisco Peña-Benitez
  • Piotr Witkowski
Open Access
Regular Article - Theoretical Physics
  • 64 Downloads

Abstract

We show how a Hall viscosity induced by a magnetic field can be generated in strongly coupled theories with a holographic dual. This is achieved by considering parity-breaking higher derivative terms in the gravity dual. These terms couple the Riemann curvature tensor to the field strength of a gauge field dual to the charge current, and have an analog in the field theory side as a coupling between the “Euler current” and the electromagnetic field. As a concrete example, we study the effect of the new terms in the thermodynamic and transport properties of a strongly coupled magnetized plasma dual to a dyonic black hole in AdS4. As a new property of the holographic model, we find that for a state that is initially neutral at zero magnetic field, a charge density and non-dissipative Hall transport are present when the magnetic field is turned on. Remarkably, we also observe that the results from the holographic model are consistent with hydrodynamics even at magnetic fields much larger than temperature.

Keywords

Holography and condensed matter physics (AdS/CMT) Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionallycharged excitations, Phys. Rev. Lett.50 (1983) 1395 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.K. Jain, Composite fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett.63 (1989) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev.X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].
  4. [4]
    C. Wang, N.R. Cooper, B.I. Halperin and A. Stern, Particle-hole symmetry in the fermion-Chern-Simons and Dirac descriptions of a half-filled Landau level, Phys. Rev.X 7 (2017) 031029 [arXiv:1701.00007] [INSPIRE].
  5. [5]
    D.X. Nguyen, S. Golkar, M.M. Roberts and D.T. Son, Particle-hole symmetry and composite fermions in fractional quantum Hall states, Phys. Rev.B 97 (2018) 195314 [arXiv:1709.07885] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    X.G. Wen and A. Zee, Shift and spin vector: New topological quantum numbers for the Hall fluids, Phys. Rev. Lett.69 (1992) 953 [Erratum ibid.69 (1992) 3000] [INSPIRE].
  7. [7]
    J.E. Avron, R. Seiler and P.G. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett.75 (1995) 697 [cond-mat/9502011] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.E. Avron, Odd viscosity, physics/9712050.
  9. [9]
    N. Read, Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids, Phys. Rev.B 79 (2009) 045308 [arXiv:0805.2507] [INSPIRE].
  10. [10]
    T. Scaffidi et al., Hydrodynamic electron flow and Hall viscosity, Phys. Rev. Lett.118 (2017) 226601. [arXiv:1703.07325].
  11. [11]
    B.N. Narozhny and M. Schütt, Magnetohydrodynamics in graphene: shear and Hall viscosities, Phys. Rev.B 100 (2019) 035125 [arXiv:1905.11424] [INSPIRE].
  12. [12]
    A.I. Berdyugin et al., Measuring Hall viscosity of graphenes electron fluid, Science364 (2019) 162.ADSGoogle Scholar
  13. [13]
    I. Matthaiakakis et al., New proposal for measuring the Hall viscosity in two-dimensional Fermi liquids, arXiv:1905.03269 [INSPIRE].
  14. [14]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
  15. [15]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. Keski-Vakkuri and P. Kraus, Quantum Hall effect in AdS/CFT, JHEP09 (2008) 130 [arXiv:0805.4643] [INSPIRE].
  18. [18]
    J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP11 (2008) 020 [arXiv:0809.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP06 (2009) 066 [arXiv:0901.0924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP07 (2009) 065 [arXiv:0903.2194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Kawamoto and F.-L. Lin, Holographic anyons in the ABJM theory, JHEP02 (2010) 059 [arXiv:0910.5536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Belhaj and A. Segui, Engineering of quantum Hall effect from type IIA string theory on the K3 surface, Phys. Lett.B 691 (2010) 261 [arXiv:1002.2067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP10 (2010) 063 [arXiv:1003.4965] [INSPIRE].
  24. [24]
    K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP10 (2010) 027 [arXiv:1007.2490] [INSPIRE].
  25. [25]
    A. Bayntun, C.P. Burgess, B.P. Dolan and S.-S. Lee, AdS/QHE: towards a holographic description of quantum Hall experiments, New J. Phys.13 (2011) 035012 [arXiv:1008.1917] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Fujita, M 5-brane defect and QHE in AdS 4 × N (1, 1)/N = 3 SCFT, Phys. Rev.D 83 (2011) 105016 [arXiv:1011.0154] [INSPIRE].
  27. [27]
    N. Jokela, M. Jarvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP05 (2011) 101 [arXiv:1101.3329] [INSPIRE].
  28. [28]
    M. Fujita, M. Kaminski and A. Karch, SL(2, ℤ) action on AdS/BCFT and Hall conductivities, JHEP07 (2012) 150 [arXiv:1204.0012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Blake, S. Bolognesi, D. Tong and K. Wong, Holographic dual of the lowest Landau level, JHEP12 (2012) 039 [arXiv:1208.5771] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Melnikov, E. Orazi and P. Sodano, On the AdS/BCFT approach to quantum Hall systems, JHEP05 (2013) 116 [arXiv:1211.1416] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    C. Kristjansen and G.W. Semenoff, Giant D5 brane holographic Hall state, JHEP06 (2013) 048 [arXiv:1212.5609] [INSPIRE].
  32. [32]
    N. Jokela, G. Lifschytz and M. Lippert, Holographic anyonic superfluidity, JHEP10 (2013) 014 [arXiv:1307.6336] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Lippert, R. Meyer and A. Taliotis, A holographic model for the fractional quantum Hall effect, JHEP01 (2015) 023 [arXiv:1409.1369] [INSPIRE].
  34. [34]
    Y. Bea et al., Flux and Hall states in ABJM with dynamical flavors, JHEP03 (2015) 009 [arXiv:1411.3335] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J. Lindgren, I. Papadimitriou, A. Taliotis and J. Vanhoof, Holographic Hall conductivities from dyonic backgrounds, JHEP07 (2015) 094 [arXiv:1505.04131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Mezzalira and A. Parnachev, A holographic model of quantum Hall transition, Nucl. Phys.B 904 (2016) 448 [arXiv:1512.06052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev.D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].ADSGoogle Scholar
  38. [38]
    O. Saremi and D.T. Son, Hall viscosity from gauge/gravity duality, JHEP04 (2012) 091 [arXiv:1103.4851] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    D.T. Son and C. Wu, Holographic spontaneous parity breaking and emergent Hall viscosity and angular momentum, JHEP07 (2014) 076 [arXiv:1311.4882] [INSPIRE].
  40. [40]
    C. Hoyos, B.S. Kim and Y. Oz, Odd parity transport in non-Abelian superfluids from symmetry locking, JHEP10 (2014) 127 [arXiv:1404.7507] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of theparity anomaly’, Phys. Rev. Lett.61 (1988) 2015 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Golkar, M.M. Roberts and D.T. Son, Effective field theory of relativistic quantum Hall systems, JHEP12 (2014) 138 [arXiv:1403.4279] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Golkar, M.M. Roberts and D.T. Son, The Euler current and relativistic parity odd transport, JHEP04 (2015) 110 [arXiv:1407.7540] [INSPIRE].
  44. [44]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    K. Jensen et al., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP05 (2012) 102 [arXiv:1112.4498] [INSPIRE].
  46. [46]
    B. Bradlyn, M. Goldstein and N. Read, Kubo formulas for viscosity: Hall viscosity, Ward identities and the relation with conductivity, Phys. Rev.B 86 (2012) 245309 [arXiv:1207.7021] [INSPIRE].
  47. [47]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
  48. [48]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev.D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].
  49. [49]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  50. [50]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett.105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].
  52. [52]
    S.A. Hartnoll, Horizons, holography and condensed matter, in Black holes in higher dimensions, G.T. Horowitz ed., Cambridge University Press, Cambridge U.K. (2012), arXiv:1106.4324 [INSPIRE].
  53. [53]
    S.A. Hartnoll and D. Radicevic, Holographic order parameter for charge fractionalization, Phys. Rev.D 86 (2012) 066001 [arXiv:1205.5291] [INSPIRE].
  54. [54]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
  55. [55]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    N. Iqbal and H. Liu, Luttinger’s theorem, superfluid vortices and holography, Class. Quant. Grav.29 (2012) 194004 [arXiv:1112.3671] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP09 (2011) 121 [arXiv:1107.0368] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Copetti, J. Fernández-Pendás, K. Landsteiner and E. Megías, Anomalous transport and holographic momentum relaxation, JHEP09 (2017) 004 [arXiv:1706.05294] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    C. Copetti and J. Fernández-Pendás, Membrane paradigm and RG flows for anomalous holographic theories, JHEP04 (2018) 134 [arXiv:1712.06628] [INSPIRE].
  60. [60]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dept. of PhysicsUniversidad de OviedoOviedoSpain
  2. 2.Instituto Universitario de Ciencias y Tecnologias Espaciales de Asturias (ICTEA)OviedoSpain
  3. 3.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany

Personalised recommendations