Displaced lepton jet signatures from self-interacting dark matter bound states

  • Yuhsin Tsai
  • Tao XuEmail author
  • Hai-Bo Yu
Open Access
Regular Article - Theoretical Physics


We study self-interacting dark matter signatures at the Large Hadron Collider. A light dark photon, mediating dark matter self-interactions, can bind dark matter particles to form a bound state when they are produced via a heavy pseduoscalar in pp collisions. The bound state can further annihilate into a pair of boosted dark photons, which subsequently decay into charged leptons through a kinetic mixing portal, resulting in striking displaced lepton jet signals. After adapting the analysis used in the ATLAS experiment, we explore the reach of the model parameters at the 13 TeV run with an integrated luminosity of 300 fb−1. For heavy dark matter, the displaced lepton jet searches can surpass traditional monojet signals in setting the lower bound on the pseduoscalar mass. If a positive signal is detected, we can probe the dark matter mass and the dark coupling constant after combining both the displaced lepton jet and monojet searches. We further show the CMS dimuon search can be sensitive to the final state radiation of the dark photon. Our results demonstrate terrestrial collider experiments complement astronomical observations of galaxies in the search of the self-interacting nature of dark matter.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    B. Moore, Evidence against dissipationless dark matter from observations of galaxy haloes, Nature370 (1994) 629 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.A. Flores and J.R. Primack, Observational and theoretical constraints on singular dark matter halos, Astrophys. J.427 (1994) L1 [astro-ph/9402004] [INSPIRE].
  3. [3]
    M. Persic, P. Salucci and F. Stel, The universal rotation curve of spiral galaxies: 1. The dark matter connection, Mon. Not. Roy. Astron. Soc. 281 (1996) 27 [astro-ph/9506004] [INSPIRE].
  4. [4]
    W.J.G. de Blok, S.S. McGaugh, A. Bosma and V.C. Rubin, Mass density profiles of LSB galaxies, Astrophys. J.552 (2001) L23 [astro-ph/0103102] [INSPIRE].
  5. [5]
    R. Kuzio de Naray, G.D. Martinez, J.S. Bullock and M. Kaplinghat, The case against warm or self-interacting dark matter as explanations for cores in low surface brightness galaxies, Astrophys. J.710 (2010) L161 [arXiv:0912.3518] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K.A. Oman et al., The unexpected diversity of dwarf galaxy rotation curves, Mon. Not. Roy. Astron. Soc.452 (2015) 3650 [arXiv:1504.01437] [INSPIRE].
  7. [7]
    A.B. Newman, T. Treu, R.S. Ellis and D.J. Sand, The density profiles of massive, relaxed galaxy clusters: II. Separating luminous and dark matter in cluster cores, Astrophys. J.765 (2013)25 [arXiv:1209.1392] [INSPIRE].
  8. [8]
    J. Dubinski and R.G. Carlberg, The structure of cold dark matter halos, Astrophys. J.378 (1991)496 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J.462 (1996) 563 [astro-ph/9508025] [INSPIRE].
  10. [10]
    I.M. Santos-Santos et al., NIHAO — XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in ΛCDM, Mon. Not. Roy. Astron. Soc.473 (2018) 4392 [arXiv:1706.04202].
  11. [11]
    M. Schaller et al., The effect of baryons on the inner density profiles of rich clusters, Mon. Not. Roy. Astron. Soc. 452 (2015) 343 [arXiv:1409.8297] [INSPIRE].
  12. [12]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
  13. [13]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett.116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].
  14. [14]
    A. Kamada, M. Kaplinghat, A.B. Pace and H.-B. Yu, How the self-interacting dark matter model explains the diverse galactic rotation curves, Phys. Rev. Lett.119 (2017) 111102 [arXiv:1611.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Creasey, O. Sameie, L.V. Sales, H.-B. Yu, M. Vogelsberger and J. Zavala, Spreading out and staying sharp — creating diverse rotation curves via baryonic and self-interaction effects, Mon. Not. Roy. Astron. Soc.468 (2017) 2283 [arXiv:1612.03903] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Valli and H.-B. Yu, Dark matter self-interactions from the internal dynamics of dwarf spheroidals, Nat. Astron.2 (2018) 907 [arXiv:1711.03502] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Ren, A. Kwa, M. Kaplinghat and H.-B. Yu, Reconciling the diversity and uniformity of galactic rotation curves with self-interacting dark matter, Phys. Rev.X 9 (2019) 031020 [arXiv:1808.05695] [INSPIRE].
  18. [18]
    R. Huo, M. Kaplinghat, Z. Pan and H.-B. Yu, Signatures of self-interacting dark matter in the matter power spectrum and the CMB, Phys. Lett.B 783 (2018) 76 [arXiv:1709.09717] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    CMS collaboration, Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP02 (2019) 074 [arXiv:1810.00196] [INSPIRE].
  20. [20]
    ATLAS collaboration, Constraints on mediator-based dark matter models using \( \sqrt{s} \) = 13TeV pp collisions at the LHC with the ATLAS detector, ATLAS-CONF-2018-051, CERN, Geneva, Switzerland (2018).
  21. [21]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Halo shape and relic density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, Phys. Rev. Lett.104 (2010) 151301 [arXiv:0911.0422] [INSPIRE].
  22. [22]
    M.R. Buckley and P.J. Fox, Dark matter self-interactions and light force carriers, Phys. Rev.D 81 (2010) 083522 [arXiv:0911.3898] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Loeb and N. Weiner, Cores in dwarf galaxies from dark matter with a Yukawa potential, Phys. Rev. Lett.106 (2011) 171302 [arXiv:1011.6374] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev.D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L.G. van den Aarssen, T. Bringmann and C. Pfrommer, Is dark matter with long-range interactions a solution to all small-scale problems of ΛCDM cosmology?, Phys. Rev. Lett. 109 (2012) 231301 [arXiv:1205.5809] [INSPIRE].
  26. [26]
    S. Tulin, H.-B. Yu and K.M. Zurek, Resonant dark forces and small scale structure, Phys. Rev. Lett.110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].
  27. [27]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev.D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].
  28. [28]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Scattering properties of dark atoms and molecules, Phys. Rev.D 89 (2014) 043514 [arXiv:1311.6468] [INSPIRE].
  29. [29]
    F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen and S. Sarkar, Colliding clusters and dark matter self-interactions, Mon. Not. Roy. Astron. Soc.437 (2014) 2865 [arXiv:1308.3419] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Laha and E. Braaten, Direct detection of dark matter in universal bound states, Phys. Rev.D 89 (2014) 103510 [arXiv:1311.6386] [INSPIRE].
  31. [31]
    R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev.D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].ADSzbMATHGoogle Scholar
  32. [32]
    K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-interacting dark matter from a non-Abelian hidden sector, Phys. Rev.D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].
  33. [33]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production regimes for self-interacting dark matter, JCAP03 (2016) 018 [arXiv:1510.08063] [INSPIRE].
  34. [34]
    R. Laha, Directional detection of dark matter in universal bound states, Phys. Rev.D 92 (2015)083509 [arXiv:1505.02772] [INSPIRE].
  35. [35]
    F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger and C. Pfrommer, ETHOSan effective theory of structure formation: from dark particle physics to the matter distribution of the universe, Phys. Rev.D 93 (2016) 123527 [arXiv:1512.05344] [INSPIRE].
  36. [36]
    K.K. Boddy, M. Kaplinghat, A. Kwa and A.H.G. Peter, Hidden sector hydrogen as dark matter: small-scale structure formation predictions and the importance of hyperfine interactions, Phys. Rev.D 94 (2016) 123017 [arXiv:1609.03592] [INSPIRE].
  37. [37]
    E. Ma, Self-interacting dark matter with naturally light mediator, Mod. Phys. Lett. A 32 (2017) 1750038 [arXiv:1608.08277] [INSPIRE].
  38. [38]
    I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP09 (2017) 028 [arXiv:1703.00478] [INSPIRE].ADSGoogle Scholar
  39. [39]
    F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP08 (2017) 003 [arXiv:1704.02149] [INSPIRE].
  40. [40]
    I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys.4 (2018) 041 [arXiv:1712.07489] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g−2 in a gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \)model, JHEP06 (2018) 117 [arXiv:1805.00651] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Braaten, D. Kang and R. Laha, Production of dark-matter bound states in the early universe by three-body recombination, JHEP11 (2018) 084 [arXiv:1806.00609] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Duerr, K. Schmidt-Hoberg and S. Wild, Self-interacting dark matter with a stable vector mediator, JCAP09 (2018) 033 [arXiv:1804.10385] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Essig, H.-B. Yu, Y.-M. Zhong and S.D. Mcdermott, Constraining dissipative dark matter self-interactions, arXiv:1809.01144 [INSPIRE].
  45. [45]
    A. Kamada, M. Yamada and T.T. Yanagida, Self-interacting dark matter with a vector mediator: kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \)gauge boson, JHEP03 (2019) 021 [arXiv:1811.02567] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    X. Chu, C. Garcia-Cely and H. Murayama, Velocity dependence from resonant self-interacting dark matter, Phys. Rev. Lett.122 (2019) 071103 [arXiv:1810.04709] [INSPIRE].
  47. [47]
    W. Shepherd, T.M.P. Tait and G. Zaharijas, Bound states of weakly interacting dark matter, Phys. Rev.D 79 (2009) 055022 [arXiv:0901.2125] [INSPIRE].
  48. [48]
    H. An, B. Echenard, M. Pospelov and Y. Zhang, Probing the dark sector with dark matter bound states, Phys. Rev. Lett.116 (2016) 151801 [arXiv:1510.05020] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y. Tsai, L.-T. Wang and Y. Zhao, Dark matter annihilation decay at the LHC, Phys. Rev.D 93 (2016) 035024 [arXiv:1511.07433] [INSPIRE].
  50. [50]
    X.-J. Bi, Z. Kang, P. Ko, J. Li and T. Li, Asymmetric dark matter bound state, Phys. Rev.D 95 (2017) 043540 [arXiv:1602.08816] [INSPIRE].
  51. [51]
    L. Li, E. Salvioni, Y. Tsai and R. Zheng, Electroweak-charged bound states as LHC probes of hidden forces, Phys. Rev.D 97 (2018) 015010 [arXiv:1710.06437] [INSPIRE].
  52. [52]
    G. Elor, H. Liu, T.R. Slatyer and Y. Soreq, Complementarity for dark sector bound states, Phys. Rev.D 98 (2018) 036015 [arXiv:1801.07723] [INSPIRE].
  53. [53]
    A. Krovi, I. Low and Y. Zhang, Broadening dark matter searches at the LHC: mono-X versus darkonium channels, JHEP10 (2018) 026 [arXiv:1807.07972] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, Search for long-lived neutral particles decaying into displaced lepton jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2016-042, CERN, Geneva, Switzerland (2016).
  55. [55]
    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. LettB 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Foot and R.R. Volkas, Explaining Ωbaryon ≃ 0.2 Ωdarkthrough the synthesis of ordinary matter from mirror matter: a more general analysis, Phys. Rev. D 69 (2004) 123510 [hep-ph/0402267] [INSPIRE].
  57. [57]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett.B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev.D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
  59. [59]
    BaBar collaboration, Search for a dark photon in e +e collisions at BaBar, Phys. Rev. Lett.113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  60. [60]
    LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  61. [61]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev.D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev.D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].
  63. [63]
    M. Battaglieri et al., U.S. cosmic visions. New ideas in dark matter 2017: community report, in U.S. cosmic visions. New ideas in dark matter, College Park, MD, U.S.A., 23–25 March 2017 [arXiv:1707.04591] [INSPIRE].
  64. [64]
    P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed inclusive dark photon search at LHCb, Phys. Rev. Lett.116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].
  65. [65]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev.D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].
  66. [66]
    H. Davoudiasl and R.N. Mohapatra, On relating the genesis of cosmic baryons and dark matter, New J. Phys.14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].
  67. [67]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys.A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept.537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    F.J. Rogers, H.C. Graboske and D.J. Harwood, Bound eigenstates of the static screened Coulomb potential, Phys. Rev.A 1 (1970) 1577.ADSCrossRefGoogle Scholar
  70. [70]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Direct detection portals for self-interacting dark matter, Phys. Rev.D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].
  71. [71]
    E. Del Nobile, M. Kaplinghat and H.-B. Yu, Direct detection signatures of self-interacting dark matter with a light mediator, JCAP10 (2015) 055 [arXiv:1507.04007] [INSPIRE].
  72. [72]
    F. Kahlhoefer, S. Kulkarni and S. Wild, Exploring light mediators with low-threshold direct detection experiments, JCAP11 (2017) 016 [arXiv:1707.08571] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    PandaX-II collaboration, Constraining dark matter models with a light mediator at the PandaX-II experiment, Phys. Rev. Lett.121 (2018) 021304 [arXiv:1802.06912] [INSPIRE].
  74. [74]
    K. Schutz and T.R. Slatyer, Self-scattering for dark matter with an excited state, JCAP01 (2015) 021 [arXiv:1409.2867] [INSPIRE].
  75. [75]
    M. Blennow, S. Clementz and J. Herrero-Garcia, Self-interacting inelastic dark matter: a viable solution to the small scale structure problems, JCAP03 (2017) 048 [arXiv:1612.06681] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    Y. Zhang, Self-interacting dark matter without direct detection constraints, Phys. Dark Univ.15 (2017) 82 [arXiv:1611.03492] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    M. Kaplinghat, T. Linden and H.-B. Yu, Galactic center excess in γ rays from annihilation of self-interacting dark matter, Phys. Rev. Lett.114 (2015) 211303 [arXiv:1501.03507] [INSPIRE].
  78. [78]
    H. An, M.B. Wise and Y. Zhang, Effects of bound states on dark matter annihilation, Phys. Rev.D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].ADSGoogle Scholar
  79. [79]
    H. An, M.B. Wise and Y. Zhang, Strong CMB constraint on P-wave annihilating dark matter, Phys. Lett.B 773 (2017) 121 [arXiv:1606.02305] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett.118 (2017) 141802 [arXiv:1612.00845] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP05 (2017) 036 [arXiv:1612.07295] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A. Berlin, S. Gori, T. Lin and L.-T. Wang, Pseudoscalar portal dark matter, Phys. Rev. D 92 (2015) 015005 [arXiv:1502.06000] [INSPIRE].
  83. [83]
    S. Banerjee, D. Barducci, G. Bélanger, B. Fuks, A. Goudelis and B. Zaldivar, Cornering pseudoscalar-mediated dark matter with the LHC and cosmology, JHEP07 (2017) 080 [arXiv:1705.02327] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP04 (2013) 050 [arXiv:1302.4454] [INSPIRE].
  85. [85]
    T. Li, Revisiting the direct detection of dark matter in simplified models, Phys. Lett. B 782 (2018) 497 [arXiv:1804.02120] [INSPIRE].
  86. [86]
    CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s} \)= 13 TeV, Phys. Rev.D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
  87. [87]
    G. Salam and A. Weiler, The collider reach tool,
  88. [88]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys.80 (2000) 1 [INSPIRE].
  89. [89]
    J. Gu and Z. Liu, Physics implications of the diphoton excess from the perspective of renormalization group flow, Phys. Rev.D 93 (2016) 075006 [arXiv:1512.07624] [INSPIRE].
  90. [90]
    T. Ahmed et al., Pseudo-scalar Higgs boson production at N 3LO A+N 3LL’, Eur. Phys. J.C 76 (2016) 663 [arXiv:1606.00837] [INSPIRE].
  91. [91]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev.D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].
  92. [92]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  93. [93]
    ATLAS collaboration, Triggers for displaced decays of long-lived neutral particles in the ATLAS detector, 2013 JINST8 P07015 [arXiv:1305.2284] [INSPIRE].
  94. [94]
    ATLAS collaboration, Performance of the ATLAS muon trigger in pp collisions at \( \sqrt{s} \)= 8 TeV, Eur. Phys. J.C 75 (2015) 120 [arXiv:1408.3179] [INSPIRE].
  95. [95]
    ATLAS collaboration, ATLAS calorimeter: run 2 performance and phase-II upgrades, PoS(EPS-HEP2017) 485 (2017) [INSPIRE].
  96. [96]
    CMS collaboration, HGCAL: a High-Granularity Calorimeter for the endcaps of CMS at HL-LHC, 2017 JINST12 C01042 [INSPIRE].CrossRefGoogle Scholar
  97. [97]
    CMS collaboration, The CMS High-Granularity Calorimeter for operation at the High-Luminosity LHC, Springer Proc. Phys. 213 (2018) 7 [arXiv:1802.05987] [INSPIRE].
  98. [98]
    CMS collaboration, A search for pair production of new light bosons decaying into muons at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-18-003, CERN, Geneva, Switzerland (2018).
  99. [99]
    Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett.103 (2009) 051801 [arXiv:0902.0006] [INSPIRE].
  100. [100]
    M. Buschmann, J. Kopp, J. Liu and P.A.N. Machado, Lepton jets from radiating dark matter, JHEP07 (2015) 045 [arXiv:1505.07459] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaRiversideU.S.A.
  3. 3.Zhejiang Institute of Modern Physics, Department of PhysicsZhejiang UniversityZhejiangChina

Personalised recommendations