Advertisement

High precision determination of αs from a global fit of jet rates

  • Andrii VerbytskyiEmail author
  • Andrea Banfi
  • Adam Kardos
  • Pier Francesco Monni
  • Stefan Kluth
  • Gábor Somogyi
  • Zoltán Szőr
  • Zoltán Trócsányi
  • Zoltán Tulipánt
  • Giulia Zanderighi
Open Access
Regular Article - Theoretical Physics
  • 41 Downloads

Abstract

We present state-of-the-art extractions of the strong coupling based on N3LO+NNLL accurate predictions for the two-jet rate in the Durham clustering algorithm at e+e collisions, as well as a simultaneous fit of the two- and three-jet rates taking into account correlations between the two observables. The fits are performed on a large range of data sets collected at the LEP and PETRA colliders, with energies spanning from 35 GeV to 207 GeV. Owing to the high accuracy of the predictions used, the perturbative uncertainty is considerably smaller than that due to hadronization. Our best determination at the Z mass is αs (MZ) = 0.11881 ± 0.00063(exp.) ± 0.00101(hadr.) ± 0.00045(ren.) ± 0.00034(res.), which is in agreement with the latest world average and has a comparable total uncertainty.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon picture, Phys. Lett.47B (1973) 365 [INSPIRE].
  2. [2]
    D.J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30 (1973) 1343 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett.30 (1973) 1346 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theoriesI, Phys. Rev.D 8 (1973) 3633 [INSPIRE].ADSGoogle Scholar
  5. [5]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
  6. [6]
    Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys.B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].
  7. [7]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e +e annihilation, JHEP12 (2007) 094 [arXiv:0711.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(\( {\alpha}_s^3 \)) in QCD, Phys. Rev. Lett.100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].
  9. [9]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett.101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].
  10. [10]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev.D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].
  12. [12]
    S.G. Gorishnii, A.L. Kataev and S.A. Larin, The O(\( {\alpha}_s^3 \))-corrections to σ tot(e +e hadrons) and Γ(τ ν τ + hadrons) in QCD, Phys. Lett.B 259 (1991) 144 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Becher and M.D. Schwartz, A precise determination of αsfrom LEP thrust data using effective field theory, JHEP07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Abbate et al., Thrust at N 3LL with power corrections and a precision global fit for αs(m Z ), Phys. Rev.D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
  15. [15]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP11 (2012) 126 [arXiv:1210.0580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3LLincluding power corrections, Phys. Rev.D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].
  18. [18]
    D. de Florian and M. Grazzini, The back-to-back region in e +e energy-energy correlation, Nucl. Phys.B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].
  19. [19]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e +e annihilation, JHEP05 (2015) 102 [arXiv:1412.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e +e at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett.117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].
  21. [21]
    Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy, Eur. Phys. J.C 77 (2017) 749 [arXiv:1708.04093] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    I. Moult and H.X. Zhu, Simplicity from recoil: the three-loop soft function and factorization for the energy-energy correlation, JHEP08 (2018) 160 [arXiv:1801.02627] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Banfi, B.K. El-Menoufi and P.F. Monni, The Sudakov radiator for jet observables and the soft physical coupling, JHEP01 (2019) 083 [arXiv:1807.11487] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Bell, A. Hornig, C. Lee and J. Talbert, e +e angularity distributions at NNLL accuracy, JHEP01 (2019) 147 [arXiv:1808.07867] [INSPIRE].
  25. [25]
    T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J.C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].
  26. [26]
    A. Kardos et al., Precise determination of αS (M Z ) from a global fit of energy-energy correlation to NNLO+NNLL predictions, Eur. Phys. J.C 78 (2018) 498 [arXiv:1804.09146] [INSPIRE].
  27. [27]
    S. Catani et al., New clustering algorithm for multi-jet cross-sections in e +e annihilation, Phys. Lett.B 269 (1991) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of doubly-real emissions, JHEP01 (2007) 070 [hep-ph/0609042] [INSPIRE].
  29. [29]
    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP01 (2007) 052 [hep-ph/0609043] [INSPIRE].
  30. [30]
    A. Kardos, G. Somogyi and Z. Trócsányi, Jet cross sections with CoLoRFul NNLO, PoS(LL2016) 021.
  31. [31]
    A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP01 (2002) 018 [hep-ph/0112156] [INSPIRE].
  32. [32]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e +e event shape distributions, Nucl. Phys.B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Nason and C. Oleari, Next-to-leading order corrections to momentum correlations in Z 0b \( \overline{b} \), Phys. Lett.B 407(1997) 57 [hep-ph/9705295] [INSPIRE].
  34. [34]
    F. Krauss and G. Rodrigo, Resummed jet rates for e +e annihilation into massive quarks, Phys. Lett.B 576 (2003) 135 [hep-ph/0303038] [INSPIRE].
  35. [35]
    K.G. Chetyrkin, R.V. Harlander and J.H. Kuhn, Quartic mass corrections to R hadat \( \mathcal{O} \)(\( {\alpha}_s^3 \)), Nucl. Phys.B 586 (2000) 56 [Erratum ibid.B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].
  36. [36]
    P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e +e collisions, Nucl. Phys.B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].
  37. [37]
    OPAL collaboration, Test of the flavor independence of αsusing next-to-leading order calculations for heavy quarks, Eur. Phys. J.C 11 (1999) 643 [hep-ex/9904013] [INSPIRE].
  38. [38]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.133 (2000) 43 [hep-ph/0004189] [INSPIRE].
  39. [39]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  40. [40]
    ALEPH collaboration, Properties of hadronic Z decays and test of QCD generators, Z. Phys.C 55 (1992) 209 [INSPIRE].
  41. [41]
    OPAL collaboration, QCD studies with e +e annihilation data at 161 GeV, Z. Phys.C 75 (1997) 193 [INSPIRE].
  42. [42]
    OPAL collaboration, QCD studies with e +e annihilation data at 130 GeV and 136 GeV, Z. Phys.C 72 (1996) 191 [INSPIRE].
  43. [43]
    JADE, OPAL collaboration, QCD analyses and determinations of αsin e +e annihilation at energies between 35 GeV and 189 GeV, Eur. Phys. J.C 17 (2000) 19 [hep-ex/0001055] [INSPIRE].
  44. [44]
    OPAL collaboration, A global determination of α s(M (Z)) at LEP, Z. Phys.C 55 (1992) 1 [INSPIRE].
  45. [45]
    JADE collaboration, Measurement of the strong coupling αSfrom the three-jet rate in e +e -annihilation using JADE data, Eur. Phys. J.C 73 (2013) 2332 [arXiv:1205.3714] [INSPIRE].
  46. [46]
    L3 collaboration, Studies of hadronic event structure in e +e annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept.399 (2004) 71 [hep-ex/0406049] [INSPIRE].
  47. [47]
    DELPHI collaboration, Measurement of event shape and inclusive distributions at \( \sqrt{s} \) = 130 GeV and 136GeV,Z. Phys.C 73(1997) 229 [INSPIRE].
  48. [48]
    ALEPH collaboration, Studies of QCD at e +e centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J.C 35 (2004) 457 [INSPIRE].
  49. [49]
    OPAL collaboration, A study of the recombination scheme dependence of jet production rates and of α s(m(Z 0)) in hadronic Z 0decays, Z. Phys.C 49 (1991) 375 [INSPIRE].
  50. [50]
    L3 collaboration, QCD studies and determination of α sin e +e collisions at \( \sqrt{s} \) = 161 GeV and 172 GeV, Phys. Lett.B 404 (1997) 390 [INSPIRE].
  51. [51]
    A. Verbytskyi, Studies of correlations between measurements of jet observables, 2017 JINST12 P04013 [arXiv:1609.06898] [INSPIRE].
  52. [52]
    A. Verbytskyi, Measurements of Durham, anti-k tand SIScone jet rates at LEP with the OPAL detector, Nucl. Part. Phys. Proc.294-296 (2018) 13.Google Scholar
  53. [53]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  54. [54]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  55. [55]
    E. Bothmann et al., Event generation with SHERPA 2.2, arXiv:1905.09127 [INSPIRE].
  56. [56]
    S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP08 (2013) 114 [arXiv:1211.5467] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Alwall et al., MadGraph 5: going beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
  58. [58]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with Open Loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
  59. [59]
    B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. Phys.B 238 (1984) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept.97 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    L. Lönnblad, ThePEG, PYTHIA7, HERWIG++ and Ariadne, Nucl. Instrum. Meth.A 559 (2006) 246 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP02 (2002) 044 [hep-ph/0109036] [INSPIRE].
  65. [65]
    C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [INSPIRE].
  66. [66]
    J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J.C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].
  67. [67]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  68. [68]
    G. Dissertori et al., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e +e annihilations, JHEP02 (2008) 040 [arXiv:0712.0327] [INSPIRE].
  69. [69]
    F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun.10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    PAL collaboration, Determination of αs using OPAL hadronic event shapes at \( \sqrt{s} \) = 91-209 GeV and resummed NNLO calculations, Eur. Phys. J.C 71(2011) 1733 [arXiv:1101.1470] [INSPIRE].
  71. [71]
    R.W.L. Jones et al., Theoretical uncertainties on αsfrom event shape variables in e +e annihilations, JHEP12 (2003) 007 [hep-ph/0312016] [INSPIRE].
  72. [72]
    G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e +e annihilations, JHEP08 (2009) 036 [arXiv:0906.3436] [INSPIRE].
  73. [73]
    S. Alekhin et al., HERAFitter, Eur. Phys. J.C 75 (2015) 304 [arXiv:1410.4412] [INSPIRE].
  74. [74]
    G. Dissertori et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, Phys. Rev. Lett.104 (2010) 072002 [arXiv:0910.4283] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Andrii Verbytskyi
    • 1
    Email author
  • Andrea Banfi
    • 2
  • Adam Kardos
    • 3
  • Pier Francesco Monni
    • 4
  • Stefan Kluth
    • 1
  • Gábor Somogyi
    • 5
  • Zoltán Szőr
    • 6
  • Zoltán Trócsányi
    • 5
    • 7
  • Zoltán Tulipánt
    • 5
  • Giulia Zanderighi
    • 1
  1. 1.Max-Planck-Institut für PhysikMunichGermany
  2. 2.University of SussexBrightonU.K.
  3. 3.University of DebrecenDebrecenHungary
  4. 4.CERN, Theory DepartmentGeneva 23Switzerland
  5. 5.MTA-DE Particle Physics Research GroupUniversity of DebrecenDebrecenHungary
  6. 6.PRISMA Cluster of Excellence, Institut für PhysikUniversität MainzMainzGermany
  7. 7.Institute for Theoretical PhysicsEötvös Loránd UniversityBudapestHungary

Personalised recommendations