Advertisement

Tri-vector deformations in d = 11 supergravity

  • Ilya BakhmatovEmail author
  • Nihat Sadik Deger
  • Edvard T. Musaev
  • Eoin Ó Colgáin
  • Mohammad M. Sheikh-Jabbari
Open Access
Regular Article - Theoretical Physics

Abstract

We construct a d = 11 supergravity analogue of the open-closed string map in the context of SL(5) Exceptional Field Theory (ExFT). The deformation parameter tri-vector Ω generalizes the non-commutativity bi-vector parameter Θ of the open string. When applied to solutions in d = 11, this map provides an economical way of performing TsT deformations, and may be used to recover d = 10 Yang-Baxter deformations after dimensional reduction. We present a generalization of the Classical Yang-Baxter Equation (CYBE) for rank 3 objects, which emerges from d = 11 supergravity and the SL(5) ExFT. This equation is shown to reduce to the d = 10 CYBE upon dimensional reduction.

Keywords

Space-Time Symmetries String Duality Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett.B 194 (1987) 59 [INSPIRE].
  2. [2]
    T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE].
  3. [3]
    X.C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string theory, Nucl. Phys.B 403 (1993) 377 [hep-th/9210021] [INSPIRE].
  4. [4]
    C. Klimčík and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett.B 372 (1996) 65 [hep-th/9512040] [INSPIRE].
  5. [5]
    C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
  6. [6]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys.50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].
  7. [7]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].
  9. [9]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5 × S 5superstring, JHEP04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals, Nucl. Phys.B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].
  11. [11]
    T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the AdS 5 × S 5Superstring, J. Phys.A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].
  12. [12]
    C. Klimčík, η and λ deformations as E -models, Nucl. Phys.B 900 (2015) 259 [arXiv:1508.05832] [INSPIRE].
  13. [13]
    B. Hoare and A.A. Tseytlin, On integrable deformations of superstring σ-models related to AdS n × S nsupercosets, Nucl. Phys.B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].
  14. [14]
    K. Sfetsos, K. Siampos and D.C. Thompson, Generalised integrable λ- and η-deformations and their relation, Nucl. Phys.B 899 (2015) 489 [arXiv:1506.05784] [INSPIRE].
  15. [15]
    F. Hassler, Poisson-Lie T-duality in Double Field Theory, arXiv:1707.08624 [INSPIRE].
  16. [16]
    D. Lüst and D. Osten, Generalised fluxes, Yang-Baxter deformations and the O(d, d) structure of non-abelian T-duality, JHEP05 (2018) 165 [arXiv:1803.03971] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y. Sakatani, Type II DFT solutions from Poisson-Lie T-duality/plurality, arXiv:1903.12175 [INSPIRE].
  18. [18]
    A. Catal-Ozer, Non-Abelian T-duality as a Transformation in Double Field Theory, arXiv:1904.00362 [INSPIRE].
  19. [19]
    A. Çatal Özer and S. Tunalı, Yang-Baxter Deformation as an O(d, d) Transformation, arXiv:1906.09053 [INSPIRE].
  20. [20]
    B. Hoare and A.A. Tseytlin, Homogeneous Yang-Baxter deformations as non-abelian duals of the AdS 5σ-model, J. Phys.A 49 (2016) 494001 [arXiv:1609.02550] [INSPIRE].
  21. [21]
    R. Borsato and L. Wulff, Integrable Deformations of T -Dual σ Models, Phys. Rev. Lett.117 (2016) 251602 [arXiv:1609.09834] [INSPIRE].
  22. [22]
    R. Borsato and L. Wulff, On non-abelian T-duality and deformations of supercoset string σ-models, JHEP10 (2017) 024 [arXiv:1706.10169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Borsato and L. Wulff, Non-abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings, JHEP08 (2018) 027 [arXiv:1806.04083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Catal-Ozer, Lunin-Maldacena deformations with three parameters, JHEP02 (2006) 026 [hep-th/0512290] [INSPIRE].
  25. [25]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP05 (2005) 033 [hep-th/0502086] [INSPIRE].
  26. [26]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP05 (2005) 069 [hep-th/0503201] [INSPIRE].
  27. [27]
    T. Araujo, I. Bakhmatov, E. Ó. Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, Yang-Baxter σ-models, conformal twists and noncommutative Yang-Mills theory, Phys. Rev.D 95 (2017) 105006 [arXiv:1702.02861] [INSPIRE].
  28. [28]
    T. Araujo, I. Bakhmatov, E. Ó. Colgáin, J.-i. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, Conformal twists, Yang-Baxter σ-models & holographic noncommutativity, J. Phys.A 51 (2018) 235401 [arXiv:1705.02063] [INSPIRE].
  29. [29]
    T. Araujo, E. Ó Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, I in generalized supergravity, Eur. Phys. J.C 77 (2017) 739 [arXiv:1708.03163] [INSPIRE].
  30. [30]
    I. Bakhmatov, E. Ó Colgáin, M.M. Sheikh-Jabbari and H. Yavartanoo, Yang-Baxter Deformations Beyond Coset Spaces (a slick way to do TsT), JHEP06 (2018) 161 [arXiv:1803.07498] [INSPIRE].
  31. [31]
    G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5 × S 5superstring, T-duality and modified type-II equations, Nucl. Phys.B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].
  32. [32]
    L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE].
  33. [33]
    M. Hong, Y. Kim and E. Ó. Colgáin, On non-Abelian T-duality for non-semisimple groups, Eur. Phys. J.C 78 (2018) 1025 [arXiv:1801.09567] [INSPIRE].
  34. [34]
    S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer and G. Veneziano, Remarks on nonAbelian duality, Nucl. Phys.B 435 (1995) 147 [hep-th/9409011] [INSPIRE].
  35. [35]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE].
  36. [36]
    J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Homogeneous Yang-Baxter deformations as generalized diffeomorphisms, J. Phys.A 50 (2017) 415401 [arXiv:1705.07116] [INSPIRE].
  37. [37]
    J.J. Fernandez-Melgarejo, J.-i. Sakamoto, Y. Sakatani and K. Yoshida, T -folds from Yang-Baxter deformations, JHEP12 (2017) 108 [arXiv:1710.06849] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    J.-I. Sakamoto and Y. Sakatani, Local β-deformations and Yang-Baxter σ-model, JHEP06 (2018) 147 [arXiv:1803.05903] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev.D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
  40. [40]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev.D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].
  41. [41]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP08 (2010) 008 [arXiv:1006.4823] [INSPIRE].
  43. [43]
    Y. Sakatani, S. Uehara and K. Yoshida, Generalized gravity from modified DFT, JHEP04 (2017) 123 [arXiv:1611.05856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A. Baguet, M. Magro and H. Samtleben, Generalized IIB supergravity from exceptional field theory, JHEP03 (2017) 100 [arXiv:1612.07210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    R. Blumenhagen, F. Hassler and D. Lüst, Double Field Theory on Group Manifolds, JHEP02 (2015) 001 [arXiv:1410.6374] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    R. Blumenhagen, P. du Bosque, F. Hassler and D. Lüst, Generalized Metric Formulation of Double Field Theory on Group Manifolds, JHEP08 (2015) 056 [arXiv:1502.02428] [INSPIRE].
  47. [47]
    S. Demulder, F. Hassler and D.C. Thompson, Doubled aspects of generalised dualities and integrable deformations, JHEP02 (2019) 189 [arXiv:1810.11446] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
  49. [49]
    I. Bakhmatov and E.T. Musaev, Classical Yang-Baxter equation from β-supergravity, JHEP01 (2019) 140 [arXiv:1811.09056] [INSPIRE].
  50. [50]
    E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A Noncommutative M-theory five-brane, Nucl. Phys.B 590 (2000) 173 [hep-th/0005026] [INSPIRE].
  51. [51]
    S. Kawamoto and N. Sasakura, Open membranes in a constant C field background and noncommutative boundary strings, JHEP07 (2000) 014 [hep-th/0005123] [INSPIRE].
  52. [52]
    E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, Critical fields on the M5-brane and noncommutative open strings, Phys. Lett.B 492 (2000) 193 [hep-th/0006112] [INSPIRE].
  53. [53]
    C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP03 (2015) 144 [arXiv:1412.0635] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    C.-h. Ahn and J.F. Vazquez-Poritz, Marginal deformations with U(1)3global symmetry, JHEP07 (2005) 032 [hep-th/0505168] [INSPIRE].
  55. [55]
    J.P. Gauntlett, S. Lee, T. Mateos and D. Waldram, Marginal deformations of field theories with AdS 4duals, JHEP08 (2005) 030 [hep-th/0505207] [INSPIRE].
  56. [56]
    D.S. Berman and L.C. Tadrowski, M-theory brane deformations, Nucl. Phys.B 795 (2008) 201 [arXiv:0709.3059] [INSPIRE].
  57. [57]
    A. Catal-Ozer and N.S. Deger, Beta, Dipole and Noncommutative Deformations of M-theory Backgrounds with One or More Parameters, Class. Quant. Grav.26 (2009) 245015 [arXiv:0904.0629] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    S. Hellerman, D. Orlando and S. Reffert, The Omega Deformation From String and M-theory, JHEP07 (2012) 061 [arXiv:1204.4192] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Orlando, S. Reffert, Y. Sekiguchi and K. Yoshida, Killing spinors from classical r-matrices, J. Phys.A 51 (2018) 395401 [arXiv:1805.00948] [INSPIRE].
  60. [60]
    A. Ashmore, Marginal deformations of 3d \( \mathcal{N} \) = 2 CFTs from AdS 4backgrounds in generalised geometry, JHEP12 (2018) 060 [arXiv:1809.03503] [INSPIRE].
  61. [61]
    I. Bakhmatov, Ö. Kelekci, E. Ó Colgáin and M.M. Sheikh-Jabbari, Classical Yang-Baxter Equation from Supergravity, Phys. Rev.D 98 (2018) 021901 [arXiv:1710.06784] [INSPIRE].
  62. [62]
    R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP10 (2016) 045 [arXiv:1608.03570] [INSPIRE].
  63. [63]
    J. Ehlers, Transformations of static exterior solutions of Einsteins gravitational field equations into different solutions by means of conformal mapping, Colloq. Int. CNRS91 (1962) 275 [INSPIRE].
  64. [64]
    E. Malek, Timelike U-dualities in Generalised Geometry, JHEP11 (2013) 185 [arXiv:1301.0543] [INSPIRE].
  65. [65]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP01 (2013) 064 [arXiv:1208.5884] [INSPIRE].
  66. [66]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP02 (2016) 012 [arXiv:1512.02163] [INSPIRE].
  67. [67]
    O. Hohm and H. Samtleben, U-duality covariant gravity, JHEP09 (2013) 080 [arXiv:1307.0509] [INSPIRE].
  68. [68]
    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP04 (2013) 147 [Erratum ibid.11 (2013) 210] [arXiv:1302.1652] [INSPIRE].
  69. [69]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP01 (2012) 012 [arXiv:1110.3930] [INSPIRE].
  70. [70]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP02 (2012) 108 [arXiv:1111.0459] [INSPIRE].
  71. [71]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett.108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].
  72. [72]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys.60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].
  73. [73]
    F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP07 (2013) 048 [arXiv:1303.1413] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP10 (2016) 076 [arXiv:1607.05450] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev.D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].
  76. [76]
    T. Matsumoto and K. Yoshida, Integrable deformations of the AdS 5 × S 5superstring and the classical Yang-Baxter equationTowards the gravity/CYBE correspondence, J. Phys. Conf. Ser.563 (2014) 012020 [arXiv:1410.0575] [INSPIRE].
  77. [77]
    T. Matsumoto and K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter equationTowards the gravity/CYBE correspondence, JHEP06 (2014) 135 [arXiv:1404.1838] [INSPIRE].
  78. [78]
    N.S. Deger and A. Kaya, Deformations of Cosmological Solutions of D = 11 Supergravity, Phys. Rev.D 84 (2011) 046005 [arXiv:1104.4019] [INSPIRE].
  79. [79]
    T. Araujo, E. Ó. Colgáin and H. Yavartanoo, Embedding the modified CYBE in Supergravity, Eur. Phys. J.C 78 (2018) 854 [arXiv:1806.02602] [INSPIRE].
  80. [80]
    J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance for generalized supergravity backgrounds from the doubled formalism, PTEP2017 (2017) 053B07 [arXiv:1703.09213] [INSPIRE].
  81. [81]
    L. Wulff, All symmetric space solutions of eleven-dimensional supergravity, J. Phys.A 50 (2017) 245401 [arXiv:1611.06139] [INSPIRE].
  82. [82]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett.B 189 (1987) 75 [INSPIRE].
  83. [83]
    J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple Membranes in M-theory, Phys. Rept.527 (2013) 1 [arXiv:1203.3546] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    J.A. de Azcarraga and J.M. Izquierdo, n-ary algebras: A Review with applications, J. Phys.A 43 (2010) 293001 [arXiv:1005.1028] [INSPIRE].
  85. [85]
    V.T. Filippov, n-Lie algebras, Siberian Math. J.26 (1985) 879.Google Scholar
  86. [86]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP10 (2011) 144 [arXiv:1109.2025] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Asia Pacific Center for Theoretical PhysicsPohangKorea
  2. 2.Department of MathematicsBoğaziçi UniversityIstanbulTurkey
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Kazan Federal University, Institute of PhysicsKazanRussia
  5. 5.Department of Physics, PostechPohangKorea
  6. 6.School of Physics, Institute for Research in Fundamental Sciences (IPM)TehranIran
  7. 7.The Abdus Salam ICTPTriesteItaly

Personalised recommendations