Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings

  • Motoi Endo
  • Wen YinEmail author
Open Access
Regular Article - Theoretical Physics


We propose a SUSY scenario to explain the current electron and muon g − 2 discrepancies without introducing lepton flavor mixings. Threshold corrections to the Yukawa couplings can enhance the electron g − 2 and flip the sign of the SUSY contributions. The mechanism predicts a flavor-dependent slepton mass spectrum. We show that it is compatible with the Higgs mediation scenario.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and \( \alpha \left({m}_Z^2\right) \)using newest hadronic cross-section data, Eur. Phys. J.C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
  2. [2]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({m}_Z^2\right) \): a new data-based analysis, Phys. Rev.D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  4. [4]
    B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys.C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].
  5. [5]
    D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett.100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].
  6. [6]
    D. Hanneke, S.F. Hoogerheide and G. Gabrielse, Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment, Phys. Rev.A 83 (2011) 052122 [arXiv:1009.4831] [INSPIRE].
  7. [7]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order electron anomalous magnetic momentContribution of diagrams without closed lepton loops, Phys. Rev.D 91 (2015) 033006 [Erratum ibid.D 96 (2017) 019901] [arXiv:1412.8284] [INSPIRE].
  8. [8]
    R.H. Parker et al., Measurement of the fine-structure constant as a test of the Standard Model, Science360 (2018) 191 [arXiv:1812.04130] [INSPIRE].
  9. [9]
    H. Davoudiasl and W.J. Marciano, Tale of two anomalies, Phys. Rev.D 98 (2018) 075011 [arXiv:1806.10252] [INSPIRE].
  10. [10]
    A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,eand implications for a large muon EDM, Phys. Rev.D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].
  11. [11]
    J. Liu, C.E.M. Wagner and X.-P. Wang, A light complex scalar for the electron and muon anomalous magnetic moments, JHEP03 (2019) 008 [arXiv:1810.11028] [INSPIRE].
  12. [12]
    B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett.B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].
  13. [13]
    X.-F. Han, T. Li, L. Wang and Y. Zhang, Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model, Phys. Rev.D 99 (2019) 095034 [arXiv:1812.02449] [INSPIRE].
  14. [14]
    M. Yamaguchi and W. Yin, A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model, PTEP2018 (2018) 023B06 [arXiv:1606.04953] [INSPIRE].
  15. [15]
    M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t} \)bH +interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys.B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].
  16. [16]
    S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev.D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].
  17. [17]
    L. Hofer, U. Nierste and D. Scherer, Resummation of tan-beta-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP10 (2009) 081 [arXiv:0907.5408] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Girrbach, S. Mertens, U. Nierste and S. Wiesenfeldt, Lepton flavour violation in the MSSM, JHEP05 (2010) 026 [arXiv:0910.2663] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys.B 555 (1999) 53 [hep-ph/9902443] [INSPIRE].
  20. [20]
    M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g − 2, JHEP11(2013) 013 [arXiv:1309.3065] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Bach, J.-h. Park, D. Stöckinger and H. Stöckinger-Kim, Large muon (g − 2) with TeV-scale SUSY masses for tan β, JHEP10 (2015) 026 [arXiv:1504.05500] [INSPIRE].
  22. [22]
    H.M. Tran and H.T. Nguyen, GUT-inspired MSSM in light of muon g − 2 and LHC results at \( \sqrt{s}=13 \)TeV, Phys. Rev. D99 (2019) 035040 [arXiv:1812.11757] [INSPIRE].
  23. [23]
    J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)μin SU(5) × U(1) supergravity models, Phys. Rev.D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].
  24. [24]
    U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g−2 experiment, Phys. Rev.D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].
  25. [25]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev.D 53 (1996) 6565 [Erratum ibid.D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  26. [26]
    P. von Weitershausen, M. Schafer, H. Stöckinger-Kim and D. Stöckinger, Photonic SUSY two-loop corrections to the muon magnetic moment, Phys. Rev.D 81 (2010) 093004 [arXiv:1003.5820] [INSPIRE].
  27. [27]
    G. Degrassi and G.F. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev.D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].
  28. [28]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun.183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Endo, T. Moroi, M.M. Nojiri and Y. Shoji, Renormalization-scale uncertainty in the decay rate of false vacuum, JHEP01 (2016) 031 [arXiv:1511.04860] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.R. Choudhury and N. Gaur, Dileptonic decay of B(s) meson in SUSY models with large tan β, Phys. Lett.B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].
  31. [31]
    K.S. Babu and C.F. Kolda, Higgs mediated B 0→ μ +μ in minimal supersymmetry, Phys. Rev. Lett.84 (2000) 228 [hep-ph/9909476] [INSPIRE].
  32. [32]
    M. Endo, T. Moroi and M.M. Nojiri, Footprints of supersymmetry on Higgs decay, JHEP04 (2015) 176 [arXiv:1502.03959] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Viable range of the mass scale of the standard model, Phys. Rev.D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
  34. [34]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett.65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX sγ in supersymmetry, Nucl. Phys. B 534(1998) 3 [hep-ph/9806308] [INSPIRE].
  36. [36]
    A.J. Buras et al., Universal unitarity triangle and physics beyond the standard model, Phys Lett.B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].
  37. [37]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  38. [38]
    P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Running minimal flavor violation, Phys. Lett.B 668 (2008) 202 [arXiv:0805.3989] [INSPIRE].
  39. [39]
    Y. Shimizu and W. Yin, Natural split mechanism for sfermions: N = 2 supersymmetry in phenomenology, Phys. Lett.B 754 (2016) 118 [arXiv:1509.04933] [INSPIRE].
  40. [40]
    W. Yin, Fixed point and anomaly mediation in partially N = 2 supersymmetric standard models, Chin. Phys.C 42 (2018) 013104 [arXiv:1609.03527] [INSPIRE].
  41. [41]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev.D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].
  42. [42]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].
  43. [43]
    Y. Hamada, R. Kitano and W. Yin, Leptogenesis via neutrino oscillation magic, JHEP10 (2018) 178 [arXiv:1807.06582] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T.T. Yanagida, W. Yin and N. Yokozaki, Flavor-safe light squarks in Higgs-anomaly mediation, JHEP04 (2018) 012 [arXiv:1801.05785] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett.B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].
  46. [46]
    T.T. Yanagida, W. Yin and N. Yokozaki, Nambu-Goldstone boson hypothesis for squarks and sleptons in pure gravity mediation, JHEP09 (2016) 086 [arXiv:1608.06618] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass determination in supersymmetry, JHEP07 (2015) 159 [arXiv:1504.05200] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theory Center, IPNS, KEKTsukubaJapan
  2. 2.The Graduate University of Advanced Studies (Sokendai)TsukubaJapan
  3. 3.Department of Physics, KAISTDaejeonKorea

Personalised recommendations