Two-loop massive quark jet functions in SCET

  • André H. Hoang
  • Christopher LepenikEmail author
  • Maximilian Stahlhofen
Open Access
Regular Article - Theoretical Physics


We calculate the O(\( {\alpha}_s^2 \)) corrections to the primary massive quark jet functions in Soft-Collinear Effective Theory (SCET). They are an important ingredient in factorized predictions for inclusive jet mass cross sections initiated by massive quarks emerging from a hard interaction with smooth quark mass dependence. Due to the effects coming from the secondary production of massive quark-antiquark pairs there are two options to define the SCET jet function, which we call universal and mass mode jet functions. They are related to whether or not a soft mass mode (zero) bin subtraction is applied for the secondary massive quark contributions and differ in particular concerning the infrared behavior for vanishing quark mass. We advocate that a useful alternative to the common zero-bin subtraction concept is to define the SCET jet functions through subtractions related to collinear-soft matrix elements. This avoids the need to impose additional power counting arguments as required for zero-bin subtractions. We demonstrate how the two SCET jet function definitions may be used in the context of two recently developed factorization approaches to treat secondary massive quark effects. We clarify the relation between these approaches and in which way they are equivalent. Our two-loop calculation involves interesting technical subtleties related to spurious rapidity divergences and infrared regularization in the presence of massive quarks.


Jets NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1803.07977 [INSPIRE].
  2. [2]
    CLICdp collaboration, Top-Quark Physics at the CLIC Electron-Positron Linear Collider, arXiv:1807.02441 [INSPIRE].
  3. [3]
    HL-LHC and HE-LHC Working Group collaborations, Standard Model Physics at the HL-LHC and HE-LHC, arXiv:1902.04070 [INSPIRE].
  4. [4]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  5. [5]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  6. [6]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett.B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  7. [7]
    E. Lunghi, D. Pirjol and D. Wyler, Factorization in leptonic radiative B → γeν decays, Nucl. Phys.B 649 (2003) 349 [hep-ph/0210091] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Becher and M. Neubert, Toward a NNLO calculation of the B → X sγ decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett.B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].
  9. [9]
    R. Brüser, Z.L. Liu and M. Stahlhofen, Three-Loop Quark Jet Function, Phys. Rev. Lett.121 (2018) 072003 [arXiv:1804.09722] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.K. Leibovich, Z. Ligeti and M.B. Wise, Comment on quark masses in SCET, Phys. Lett.B 564 (2003) 231 [hep-ph/0303099] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    I.Z. Rothstein, Factorization, power corrections, and the pion form-factor, Phys. Rev. D 70 (2004) 054024 [hep-ph/0301240] [INSPIRE].
  12. [12]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev.D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].
  13. [13]
    B. Dehnadi, Heavy quark mass determinations with sum rules and jets, Ph.D. Thesis, Vienna University, Austria, (2016).Google Scholar
  14. [14]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev.D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, in preparation.Google Scholar
  16. [16]
    Y. Makris and V. Vaidya, Transverse Momentum Spectra at Threshold for Groomed Heavy Quark Jets, JHEP10 (2018) 019 [arXiv:1807.09805] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Lee, P. Shrivastava and V. Vaidya, Predictions for energy correlators probing substructure of groomed heavy quark jets, arXiv:1901.09095 [INSPIRE].
  18. [18]
    M. Butenschoen, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, Top Quark Mass Calibration for Monte Carlo Event Generators, Phys. Rev. Lett.117 (2016) 232001 [arXiv:1608.01318] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  20. [20]
    A.H. Hoang, S. Plätzer and D. Samitz, On the Cutoff Dependence of the Quark Mass Parameter in Angular Ordered Parton Showers, JHEP10 (2018) 200 [arXiv:1807.06617] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Jain, I. Scimemi and I.W. Stewart, Two-loop Jet-Function and Jet-Mass for Top Quarks, Phys. Rev.D 77 (2008) 094008 [arXiv:0801.0743] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Gritschacher, A.H. Hoang, I. Jemos and P. Pietrulewicz, Secondary Heavy Quark Production in Jets through Mass Modes, Phys. Rev.D 88 (2013) 034021 [arXiv:1302.4743] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev.D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].
  25. [25]
    J.-y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-Collinear Factorization and Zero-Bin Subtractions, Phys. Rev.D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Pietrulewicz, S. Gritschacher, A.H. Hoang, I. Jemos and V. Mateu, Variable Flavor Number Scheme for Final State Jets in Thrust, Phys. Rev.D 90 (2014) 114001 [arXiv:1405.4860] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev.D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP02 (2015) 117 [arXiv:1410.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Lee and G.F. Sterman, Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory, Phys. Rev.D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].
  30. [30]
    A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev.D 75 (2007) 114017 [hep-ph/0702022] [INSPIRE].
  31. [31]
    A.H. Hoang, P. Pietrulewicz and D. Samitz, Variable Flavor Number Scheme for Final State Jets in DIS, Phys. Rev.D 93 (2016) 034034 [arXiv:1508.04323] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Pietrulewicz, D. Samitz, A. Spiering and F.J. Tackmann, Factorization and Resummation for Massive Quark Effects in Exclusive Drell-Yan, JHEP08 (2017) 114 [arXiv:1703.09702] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Samitz, Ph.D. Thesis, in preparation.Google Scholar
  34. [34]
    S. Gritschacher, A. Hoang, I. Jemos and P. Pietrulewicz, Two loop soft function for secondary massive quarks, Phys. Rev.D 89 (2014) 014035 [arXiv:1309.6251] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP02 (2010) 040 [arXiv:0911.0681] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett.B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Banerjee, P.K. Dhani and V. Ravindran, Gluon jet function at three loops in QCD, Phys. Rev.D 98 (2018) 094016 [arXiv:1805.02637] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev.D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett.108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Ablinger et al., Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams, J. Math. Phys.59 (2018) 062305 [arXiv:1706.01299] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A.H. Hoang, A. Pathak, P. Pietrulewicz and I.W. Stewart, Hard Matching for Boosted Tops at Two Loops, JHEP12 (2015) 059 [arXiv:1508.04137] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett.B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner and J. Schlenk, Numerical evaluation of two-loop integrals with pySecDec, Acta Phys. Polon. Supp.11 (2018) 375 [arXiv:1712.05755] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    K. Melnikov and T. van Ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys.B 591 (2000) 515 [hep-ph/0005131] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3jets: The planar topologies, Nucl. Phys.B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  47. [47]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun.175 (2006) 122 [hep-ph/0507094] [INSPIRE].
  49. [49]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  50. [50]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim.A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
  52. [52]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun.204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
  55. [55]
    S. Bauberger, F.A. Berends, M. Böhm and M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams, Nucl. Phys.B 434 (1995) 383 [hep-ph/9409388] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys.B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    E.C.G. Stueckelberg, Theory of the radiation of photons of small arbitrary mass, Helv. Phys. Acta30 (1957) 209 [INSPIRE].
  58. [58]
    G. Feldman and P.T. Matthews, Massive Electrodynamics, Phys. Rev.130 (1963) 1633 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.University of Vienna, Faculty of PhysicsWienAustria
  2. 2.Erwin Schrödinger International Institute for Mathematical PhysicsUniversity of ViennaWienAustria
  3. 3.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany

Personalised recommendations