Advertisement

Supersymmetric naturalness beyond MSSM

  • Archil Kobakhidze
  • Matthew TaliaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The experiments at the Large Hadron Collider (LHC) have pushed the limits on masses of supersymmetric particles beyond the ∼TeV scale. This compromises naturalness of the simplest supersymmetric extension of the Standard Model, the minimal supersymmetric Standard Model (MSSM). In this paper we advocate that perhaps the current experimental data are actually hinting towards the physics beyond MSSM. To illustrate this, we treat the MSSM as a low-energy limit of a more fundamental yet unspecified theory at a scale Λ, and compute the fine-tuning measure Δ for generic boundary conditions with soft SUSY breaking parameters and various cut-off scales. As a general trend we observe reduction in fine-tuning together with lowering Λ. In particular, perfectly natural [Δ ≲ \( \mathcal{O} \)(10)] theories with a multi-TeV spectrum of supersymmetric particles that are consistent with all current observations can be obtained for Λ ∼ \( \mathcal{O} \)(100)TeV. The lowering of the fine-tuning for large cut-off scales can also be observed in theories exhibiting special quasi-fixed point behaviour for certain parameters. Our observations call for a more thorough exploration of possible alternative ultraviolet completions of MSSM.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    ATLAS collaboration, Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \)TeV with the ATLAS detector, Phys. Rev.D 96 (2017) 112010 [arXiv:1708.08232] [INSPIRE].
  2. [2]
    G.G. Ross, K. Schmidt-Hoberg and F. Staub, Revisiting fine-tuning in the MSSM, JHEP03 (2017) 021 [arXiv:1701.03480] [INSPIRE].
  3. [3]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys.B 306 (1988) 63 [INSPIRE].
  4. [4]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys.B 825 (2010) 203 [arXiv:0903.1115] [INSPIRE].
  5. [5]
    J.A. Casas, J.M. Moreno, S. Robles, K. Rolbiecki and B. Zaldívar, What is a Natural SUSY scenario?, JHEP06 (2015) 070 [arXiv:1407.6966] [INSPIRE].
  6. [6]
    C.T. Hill, Quark and Lepton Masses from Renormalization Group Fixed Points, Phys. Rev.D 24 (1981) 691 [INSPIRE].
  7. [7]
    B. Pendleton and G.G. Ross, Mass and Mixing Angle Predictions from Infrared Fixed Points, Phys. Lett.98B (1981) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.A. Abel and B. Allanach, The quasi-fixed Minimal Supersymmetric Standard Model, Phys. Lett.B 415 (1997) 371 [hep-ph/9707436] [INSPIRE].
  9. [9]
    G.K. Yeghian, M. Jurcisin and D.I. Kazakov, Infrared quasifixed points and mass predictions in the MSSM, Mod. Phys. Lett.A 14 (1999) 601 [hep-ph/9807411] [INSPIRE].
  10. [10]
    M. Jurcisin and D.I. Kazakov, Infrared quasifixed points and mass predictions in the MSSM. 2. Large tan β scenario, Mod. Phys. Lett.A 14 (1999) 671 [hep-ph/9902290] [INSPIRE].
  11. [11]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e +e colliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  12. [12]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
  13. [13]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun.149 (2002) 103 [hep-ph/0112278] [INSPIRE].
  14. [14]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
  15. [15]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  16. [16]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  17. [17]
    L. Calibbi, J.M. Lindert, T. Ota and Y. Takanishi, LHC Tests of Light Neutralino Dark Matter without Light Sfermions, JHEP11 (2014) 106 [arXiv:1410.5730] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A 13 [arXiv:1502.01589] [INSPIRE].
  19. [19]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  20. [20]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  21. [21]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J.C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].
  22. [22]
    Heavy Flavor Averaging Group collaboration, Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
  23. [23]
    CMS and LHCb collaborations, Search for the rare decay \( {B}_s^0\to {\mu}^{+}{\mu}^{-} \)at the LHC with the CMS and LHCb experiments, CMS-PAS-BPH-11-019 (2011).
  24. [24]
    W. Porod, F. Staub and A. Vicente, A Flavor Kit for BSM models, Eur. Phys. J.C 74 (2014) 2992 [arXiv:1405.1434] [INSPIRE].
  25. [25]
    M.J. Baker and J. Kopp, Dark Matter Decay between Phase Transitions at the Weak Scale, Phys. Rev. Lett.119 (2017) 061801 [arXiv:1608.07578] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Kobakhidze, M.A. Schmidt and M. Talia, Mechanism for dark matter depopulation, Phys. Rev.D 98 (2018) 095026 [arXiv:1712.05170] [INSPIRE].
  27. [27]
    P. Boucaud et al., Is the QCD ghost dressing function finite at zero momentum?, JHEP06 (2006) 001 [hep-ph/0604056] [INSPIRE].
  28. [28]
    R. Dermisek and H.D. Kim, Radiatively generated maximal mixing scenario for the Higgs mass and the least fine tuned minimal supersymmetric standard model, Phys. Rev. Lett.96 (2006) 211803 [hep-ph/0601036] [INSPIRE].
  29. [29]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP03 (2014) 022 [arXiv:1309.3568] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Particle Physics at the Terascale, School of PhysicsThe University of SydneyCamperdownAustralia

Personalised recommendations