Advertisement

On SUSY-breaking moduli spaces of AdS7 vacua and 6D SCFTs

  • Daniel JunghansEmail author
  • Marco Zagermann
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

We study supersymmetric AdS7 vacua of massive type IIA string theory, which were argued to describe the near-horizon limit of NS5/D6/D8-brane intersections and to be holographically dual to 6D (1,0) theories. We show, for the case without D8-brane charges, that such vacua do not admit any supersymmetry-breaking deformations. Our result implies that the dual (1, 0) theories do not have a conformal manifold, thus extending previously known results for supersymmetric deformations. It is also in line with the recent conjecture that non-supersymmetric AdS vacua are in the swampland.

Keywords

AdS-CFT Correspondence Flux compactifications Gauge-gravity correspondence Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  2. [2]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, The problematic backreaction of SUSY-breaking branes, JHEP08 (2011) 105 [arXiv:1105.4879] [INSPIRE].
  7. [7]
    J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, (Anti-)Brane backreaction beyond perturbation theory, JHEP02 (2012) 025 [arXiv:1111.2605] [INSPIRE].
  8. [8]
    J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP12 (2010) 043 [arXiv:1009.1877] [INSPIRE].
  9. [9]
    U.H. Danielsson, G. Dibitetto, M. Fazzi and T. Van Riet, A note on smeared branes in flux vacua and gauged supergravity, JHEP04 (2014) 025 [arXiv:1311.6470] [INSPIRE].
  10. [10]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7solutions of type-II supergravity, JHEP04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Junghans, D. Schmidt and M. Zagermann, Curvature-induced Resolution of Anti-brane Singularities, JHEP10 (2014) 34 [arXiv:1402.6040] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS 5solutions of massive IIA supergravity, JHEP06 (2015) 195 [arXiv:1502.06620] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Gaiotto and A. Tomasiello, Holography for (1,0) theories in six dimensions, JHEP12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP05 (2016) 031 [arXiv:1512.02225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    F. Apruzzi and M. Fazzi, AdS 7/CFT 6with orientifolds, JHEP01 (2018) 124 [arXiv:1712.03235] [INSPIRE].
  16. [16]
    G.B. De Luca, A. Gnecchi, G. Lo Monaco and A. Tomasiello, Holographic duals of 6d RG flows, JHEP03 (2019) 035 [arXiv:1810.10013] [INSPIRE].
  17. [17]
    K.A. Intriligator, RG fixed points in six-dimensions via branes at orbifold singularities, Nucl. Phys.B 496 (1997) 177 [hep-th/9702038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys.1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys.B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. Janssen, P. Meessen and T. Ortín, The D8-brane tied up: String and brane solutions in massive type IIA supergravity, Phys. Lett.B 453 (1999) 229 [hep-th/9901078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    Y. Imamura, 1/4 BPS solutions in massive IIA supergravity, Prog. Theor. Phys.106 (2001) 653 [hep-th/0105263] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Bobev, G. Dibitetto, F.F. Gautason and B. Truijen, Holography, Brane Intersections and Six-dimensional SCFTs, JHEP02 (2017) 116 [arXiv:1612.06324] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP09 (2017) 126 [arXiv:1612.06885] [INSPIRE].
  25. [25]
    A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/ 7d gauge/gravity duals, JHEP10 (2015) 187 [arXiv:1506.05462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7and AdS 6vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett.B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7and AdS 6vacua and their consistent truncations with vector multiplets, JHEP04 (2019) 088 [arXiv:1901.11039] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Dibitetto, J.J. Fernández-Melgarejo and D. Marqués, All gaugings and stable de Sitter in D=7 half-maximal supergravity, JHEP11(2015) 037 [arXiv:1506.01294] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    F. Apruzzi, G. Dibitetto and L. Tizzano, A new 6d fixed point from holography, JHEP11 (2016) 126 [arXiv:1603.06576] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Dine and N. Seiberg, Microscopic Knowledge From Macroscopic Physics in String Theory, Nucl. Phys.B 301 (1988) 357 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys.B 307 (1988) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Bashmakov, M. Bertolini and H. Raj, On non-supersymmetric conformal manifolds: field theory and holography, JHEP11 (2017) 167 [arXiv:1709.01749] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Louis and S. Lüst, Supersymmetric AdS 7backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    B. Freivogel and M. Kleban, Vacua Morghulis, arXiv:1610.04564 [INSPIRE].
  37. [37]
    U. Danielsson and G. Dibitetto, Fate of stringy AdS vacua and the weak gravity conjecture, Phys. Rev.D 96 (2017) 026020 [arXiv:1611.01395] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Fachbereich Physik der Universität HamburgHamburgGermany

Personalised recommendations