Advertisement

A holographic superconductor forced through interactions

  • Pallab BasuEmail author
  • Jyotirmoy Bhattacharya
  • Sayan Kumar Das
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a novel mechanism to achieve superconductivity at zero chemical potential, within the holographic framework. Extending previous construction of the holographic superconductors, we consider an Einstein-Maxwell system coupled with two interacting scalars in Anti-de Sitter space. One of the scalar fields is charged and therefore, interacts non-trivially with the gauge field, while the other is uncharged. We find that, if we turn on a boundary source for the uncharged scalar field, it forces the condensation of the charged scalar, leading to a superconducting phase in the dual boundary theory. The condensation occurs at a certain critical value of the source, depending on the value of the chemical potential, which can even be zero. We work out the complete phase diagram of this scenario. We further corroborate the existence of superconductivity at zero chemical potential, through a fluctuation analysis on our solution. Notably, the conductivity of the system, as a function of probing frequency, exhibits characteristics of usual holographic superconductors. We also investigate how these properties of the system changes, as we vary the interaction strength between the scalar fields. Our results indicate a controlled mechanism to manipulate the phase transition temperature of superconductors with strongly coupled microscopics.

Keywords

AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  3. [3]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
  6. [6]
    S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A general class of holographic superconductors, JHEP04 (2010) 092 [arXiv:0906.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Chen, Q. Pan and J. Jing, Holographic superconductor models in the non-minimal derivative coupling theory, Chin. Phys.B 21 (2012) 040403 [arXiv:1012.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett.B 693 (2010) 159 [arXiv:1005.4743] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  10. [10]
    G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys.828 (2011) 313 [arXiv:1002.1722].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [INSPIRE].
  12. [12]
    P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev.D 79 (2009) 045010 [arXiv:0809.4494] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev.D 79 (2009) 066002 [arXiv:0809.4870] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative Superfluid dynamics from gravity, JHEP04 (2011) 125 [arXiv:1101.3332] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP05 (2014) 147 [arXiv:1105.3733] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Basu et al., Competing holographic orders, JHEP10 (2010) 092 [arXiv:1007.3480] [INSPIRE].
  17. [17]
    D. Musso, Competition/enhancement of two probe order parameters in the unbalanced holographic superconductor, JHEP06 (2013) 083 [arXiv:1302.7205] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Bigazzi et al., Unbalanced holographic superconductors and spintronics, JHEP02 (2012) 078 [arXiv:1111.6601] [INSPIRE].
  19. [19]
    P. Chaturvedi and P. Basu, Holographic quantum phase transitions and interacting bulk scalars, Phys. Lett.B 739 (2014) 162 [arXiv:1409.4959] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP11 (2009) 015 [arXiv:0908.3677] [INSPIRE].
  21. [21]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped holographic superconductors, Phys. Lett.B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D.K. Thapa et al., Coexistence of diamagnetism and vanishingly small electrical resistance at ambient temperature and pressure in nanostructures, arXiv:1807.08572.
  23. [23]
    B. Skinner, Repeated noise pattern in the data of arXiv:1807.08572, “Evidence for superconductivity at ambient temperature and pressure in nanostructures”, arXiv:1807.08572.
  24. [24]
    G. Baskaran, Theory of confined high T csuperconductivity in monovalent metals, arXiv:1808.02005.
  25. [25]
    H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.University of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations