Advertisement

Low-energy lepton physics in the MRSSM: (g − 2)μ, μ and μe conversion

  • Wojciech KotlarskiEmail author
  • Dominik Stöckinger
  • Hyejung Stöckinger-Kim
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

Low-energy lepton observables are discussed in the Minimal R-symmetric Supersymmetric Standard Model. We present comprehensive numerical analyses and the analytic one-loop results for (g − 2)μ, μ, and μ → e conversion. The interplay between the three observables is investigated as well as the parameter regions with large g − 2. A striking difference to the MSSM is the absence of tanβ enhancements; however we find smaller enhancements governed by MRSSM-specific R-Higgsino couplings λd and Λd. As a result we find significant contributions to g − 2 only in a small parameter space with several SUSY masses below 200 GeV, compressed spectra and large λd, Λd. In this parameter space there is a correlation between all three considered observables. In the parameter region with small (g − 2)μ the SUSY masses can be larger and the correlation between μ → eγ and μe conversion is weak. Therefore already COMET Phase 1 has a promising sensitivity to the MRSSM.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Muon g-2 collaboration, Muon (g − 2) technical design report, arXiv:1501.06858 [INSPIRE].
  2. [2]
    J-PARC muon g-2/EDM collaboration, New approach to the muon g − 2 and EDM experiment at J-PARC, J. Phys. Conf. Ser. 295 (2011) 012032 [INSPIRE].
  3. [3]
    J-PARC g-2 collaboration, Measurement of muon g − 2 and EDM with an ultra-cold muon beam at J-PARC, Nucl. Phys. Proc. Suppl. 218 (2011) 242 [INSPIRE].
  4. [4]
    MEG collaboration, Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  5. [5]
    A.M. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].
  6. [6]
    MEG collaboration, The MEG experiment result and the MEG II status, Nuovo Cim. C 41 (2018) 42 [INSPIRE].
  7. [7]
    A. Blondel et al., Research proposal for an experiment to search for the decay μ → eee, arXiv:1301.6113 [INSPIRE].
  8. [8]
    SINDRUM II collaboration, A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].
  9. [9]
    COMET collaboration, Conceptual design report for experimental search for lepton flavor violating μ -e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), KEK-2009-10 (2009).Google Scholar
  10. [10]
    COMET collaboration, A search for muon-to-electron conversion at J-PARC: The COMET experiment, PTEP 2013 (2013) 022C01.Google Scholar
  11. [11]
    COMET collaboration, COMET phase-I technical design report, arXiv:1812.09018 [INSPIRE].
  12. [12]
    Mu2e collaboration, Mu2e conceptual design report, arXiv:1211.7019 [INSPIRE].
  13. [13]
    A. Czarnecki, X. Garcia i Tormo and W.J. Marciano, Muon decay in orbit: spectrum of high-energy electrons, Phys. Rev. D 84 (2011) 013006 [arXiv:1106.4756] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Szafron and A. Czarnecki, High-energy electrons from the muon decay in orbit: radiative corrections, Phys. Lett. B 753 (2016) 61 [arXiv:1505.05237] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G.M. Pruna, A. Signer and Y. Ulrich, Fully differential NLO predictions for the rare muon decay, Phys. Lett. B 765 (2017) 280 [arXiv:1611.03617] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.M. Pruna, A. Signer and Y. Ulrich, Fully differential NLO predictions for the radiative decay of muons and taus, Phys. Lett. B 772 (2017) 452 [arXiv:1705.03782] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].
  20. [20]
    R. Fok and G.D. Kribs, μ → e in R-symmetric supersymmetry, Phys. Rev. D 82 (2010) 035010 [arXiv:1004.0556] [INSPIRE].
  21. [21]
    E. Dudas, M. Goodsell, L. Heurtier and P. Tziveloglou, Flavour models with Dirac and fake gluinos, Nucl. Phys. B 884 (2014) 632 [arXiv:1312.2011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    K.-S. Sun, J.-B. Chen, X.-Y. Yang and S.-K. Cui, LFV decays of Z boson in minimal R-symmetric supersymmetric standard model, Chin. Phys. C 43 (2019) 043101 [arXiv:1901.03800] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Bertuzzo, C. Frugiuele, T. Gregoire and E. Ponton, Dirac gauginos, R symmetry and the 125 GeV Higgs, JHEP 04 (2015) 089 [arXiv:1402.5432] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Higgs boson mass and electroweak observables in the MRSSM, JHEP 12 (2014) 124 [arXiv:1410.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Exploring the Higgs sector of the MRSSM with a light scalar, JHEP 03 (2016) 007 [arXiv:1511.09334] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Czarnecki and W.J. Marciano, The muon anomalous magnetic moment: a Harbinger for ‘new physics’, Phys. Rev. D 64 (2001) 013014 [hep-ph/0102122] [INSPIRE].
  27. [27]
    S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].
  28. [28]
    D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    H.G. Fargnoli et al., Non-decoupling two-loop corrections to (g − 2)μ from fermion/sfermion loops in the MSSM, Phys. Lett. B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].
  30. [30]
    H. Fargnoli et al., Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: detailed results, JHEP 02 (2014) 070 [arXiv:1311.1775] [INSPIRE].
  31. [31]
    P. Athron et al., GM2Calc: precise MSSM prediction for (g − 2) of the muon, Eur. Phys. J. C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].
  32. [32]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].
  34. [34]
    Z. Chacko and G.D. Kribs, Constraints on lepton flavor violation in the MSSM from the muon anomalous magnetic moment measurement, Phys. Rev. D 64 (2001) 075015 [hep-ph/0104317] [INSPIRE].
  35. [35]
    G. Isidori, F. Mescia, P. Paradisi and D. Temes, Flavour physics at large tan β with a Bino-like LSP, Phys. Rev. D 75 (2007) 115019 [hep-ph/0703035] [INSPIRE].
  36. [36]
    J. Kersten, J.-h. Park, D. Stöckinger and L. Velasco-Sevilla, Understanding the correlation between (g − 2)μ and μ → eγ in the MSSM, JHEP 08 (2014) 118 [arXiv:1405.2972] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Ilakovac, A. Pilaftsis and L. Popov, Charged lepton flavor violation in supersymmetric low-scale seesaw models, Phys. Rev. D 87 (2013) 053014 [arXiv:1212.5939] [INSPIRE].ADSGoogle Scholar
  38. [38]
    L. Calibbi et al., Charged slepton flavor post the 8 TeV LHC: a simplified model analysis of low-energy constraints and LHC SUSY searches, JHEP 10 (2015) 043 [arXiv:1502.07753] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Crivellin, S. Najjari and J. Rosiek, Lepton flavor violation in the standard model with general dimension-six operators, JHEP 04 (2014) 167 [arXiv:1312.0634] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G.M. Pruna and A. Signer, The μ → eγ decay in a systematic effective field theory approach with dimension 6 operators, JHEP 10 (2014) 014 [arXiv:1408.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Davidson, μ → eγ and matching at m W , Eur. Phys. J. C 76 (2016) 370 [arXiv:1601.07166] [INSPIRE].
  42. [42]
    S. Davidson, μ → eγ in the 2HDM: an exercise in EFT, Eur. Phys. J. C 76 (2016) 258 [arXiv:1601.01949] [INSPIRE].
  43. [43]
    A. Crivellin, S. Davidson, G.M. Pruna and A. Signer, Renormalisation-group improved analysis of μ → e processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117 [arXiv:1702.03020] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Davidson, Y. Kuno and A. Saporta, “Spin-dependent” μ → e conversion on light nuclei, Eur. Phys. J. C 78 (2018) 109 [arXiv:1710.06787] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Davidson, Y. Kuno and M. Yamanaka, Selecting μ → e conversion targets to distinguish lepton flavour-changing operators, Phys. Lett. B 790 (2019) 380 [arXiv:1810.01884] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  48. [48]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  49. [49]
    P. Athron, J.-h. Park, D. Stöckinger and A. Voigt, FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun. 190 (2015) 139 [arXiv:1406.2319] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Athron et al., FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun. 230 (2018) 145 [arXiv:1710.03760] [INSPIRE].
  51. [51]
    F. Jegerlehner, The anomalous magnetic moment of the muon, Springer Tracts Modern Physics volume 274, Springer, Germany (2017).Google Scholar
  52. [52]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(\( {M}_Z^2 \)): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].ADSGoogle Scholar
  54. [54]
    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  55. [55]
    F. Jegerlehner, The muon g − 2 in progress, Acta Phys. Polon. B 49 (2018) 1157 [arXiv:1804.07409] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Hadron contribution to vacuum polarisation, Adv. Ser. Direct. High Energy Phys. 26 (2016) 129.CrossRefzbMATHGoogle Scholar
  57. [57]
    B. Chakraborty et al., The hadronic vacuum polarization contribution to a μ from full lattice QCD, Phys. Rev. D 96 (2017) 034516 [arXiv:1601.03071] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Della Morte et al., The hadronic vacuum polarization contribution to the muon g − 2 from lattice QCD, JHEP 10 (2017) 020 [arXiv:1705.01775] [INSPIRE].
  59. [59]
    Budapest-Marseille-Wuppertal collaboration, Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles, Phys. Rev. Lett. 121 (2018) 022002 [arXiv:1711.04980] [INSPIRE].
  60. [60]
    T. Blum et al., Lattice calculation of hadronic light-by-light contribution to the muon anomalous magnetic moment, Phys. Rev. D 93 (2016) 014503 [arXiv:1510.07100] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor π 0 → γ γ , Phys. Rev. D 94 (2016) 074507 [arXiv:1607.08174] [INSPIRE].ADSGoogle Scholar
  62. [62]
    RBC, UKQCD collaboration, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 121 (2018) 022003 [arXiv:1801.07224] [INSPIRE].
  63. [63]
    V. Pauk and M. Vanderhaeghen, Anomalous magnetic moment of the muon in a dispersive approach, Phys. Rev. D 90 (2014) 113012 [arXiv:1409.0819] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: theoretical foundations, JHEP 09 (2015) 074 [arXiv:1506.01386] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Rescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muon, Phys. Rev. Lett. 118 (2017) 232001 [arXiv:1701.06554] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].
  67. [67]
    M. Hoferichter et al., Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon, Phys. Rev. Lett. 121 (2018) 112002 [arXiv:1805.01471] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Hoferichter et al., Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].
  69. [69]
    BESIII collaboration, Measurement of the e + e → π + π cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [arXiv:1507.08188] [INSPIRE].
  70. [70]
    KLOE-2 collaboration, Combination of KLOE σ (e + e → π + π γ(γ)) measurements and determination of \( {{a_{\mu}^{\pi}}^{+}}^{\pi -} \) in the energy range 0.10 < s < 0.95 GeV 2, JHEP 03 (2018) 173 [arXiv:1711.03085] [INSPIRE].
  71. [71]
    T. Xiao, S. Dobbs, A. Tomaradze, K.K. Seth and G. Bonvicini, Precision measurement of the hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. D 97 (2018) 032012 [arXiv:1712.04530] [INSPIRE].ADSGoogle Scholar
  72. [72]
    G. Colangelo et al., Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].
  73. [73]
    A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].ADSGoogle Scholar
  75. [75]
    R. Lee et al., Four-loop corrections with two closed fermion loops to fermion self energies and the lepton anomalous magnetic moment, JHEP 03 (2013) 162 [arXiv:1301.6481] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Anomalous magnetic moment with heavy virtual leptons, Nucl. Phys. B 879 (2014) 1 [arXiv:1311.2471] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    A. Kurz et al., Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order, Phys. Rev. D 92 (2015) 073019 [arXiv:1508.00901] [INSPIRE].ADSGoogle Scholar
  78. [78]
    A. Kurz et al., Electron contribution to the muon anomalous magnetic moment at four loops, Phys. Rev. D 93 (2016) 053017 [arXiv:1602.02785] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S. Laporta, High-precision calculation of the 4-loop contribution to the electron g − 2 in QED, Phys. Lett. B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Blum, Hadronic contributions to the muon anomalous magnetic moment Workshop. (g − 2)μ : Quo vadis? Workshop. Mini proceedings, arXiv:1407.4021.
  81. [81]
    M. Nowakowski, E.A. Paschos and J.M. Rodriguez, All electromagnetic form-factors, Eur. J. Phys. 26 (2005) 545 [physics/0402058] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  82. [82]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].ADSGoogle Scholar
  83. [83]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].
  84. [84]
    M.E. Krauss et al., Decoupling of heavy sneutrinos in low-scale seesaw models, Phys. Rev. D 90 (2014) 013008 [arXiv:1312.5318] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A. Abada et al., Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions, JHEP 11 (2014) 048 [arXiv:1408.0138] [INSPIRE].
  86. [86]
    R. Kitano, M. Koike, S. Komine and Y. Okada, Higgs mediated muon electron conversion process in supersymmetric seesaw model, Phys. Lett. B 575 (2003) 300 [hep-ph/0308021] [INSPIRE].
  87. [87]
    V. Cirigliano, R. Kitano, Y. Okada and P. Tuzon, On the model discriminating power of μ→e conversion in nuclei, Phys. Rev. D 80 (2009) 013002 [arXiv:0904.0957] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Crivellin, M. Hoferichter and M. Procura, Improved predictions for μ → e conversion in nuclei and Higgs-induced lepton flavor violation, Phys. Rev. D 89 (2014) 093024 [arXiv:1404.7134] [INSPIRE].ADSGoogle Scholar
  89. [89]
    T. Suzuki, D.F. Measday and J.P. Roalsvig, Total nuclear capture rates for negative muons, Phys. Rev. C 35 (1987) 2212 [INSPIRE].ADSGoogle Scholar
  90. [90]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g-2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  92. [92]
    ATLAS collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 052010 [arXiv:1712.08119] [INSPIRE].
  93. [93]
    ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, ATLAS-CONF-2019-008 (2019).
  94. [94]
    A. Crivellin et al., Lepton flavour violation in the MSSM: exact diagonalization vs mass expansion, JHEP 06 (2018) 003 [arXiv:1802.06803] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Kern- und TeilchenphysikTechnische Universität DresdenDresdenGermany

Personalised recommendations