Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies

  • Emilio Ojeda
  • Alfredo PérezEmail author
Open Access
Regular Article - Theoretical Physics


We present a new set of boundary conditions for General Relativity on AdS3, where the dynamics of the boundary degrees of freedom are described by two independent left and right members of the Gardner hierarchy of integrable equations, also known as the “mixed KdV-mKdV” hierarchy. This integrable system has the very special property that simultaneously combines both, the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) hierarchies in a single integrable structure. This relationship between gravitation in three-dimensional spacetimes and two-dimensional integrable systems is based on an extension of the recently introduced “soft hairy boundary conditions” on AdS3, where the chemical potentials are now allowed to depend locally on the dynamical fields and their spatial derivatives. The complete integrable structure of the Gardner system, i.e., the phase space, the Poisson brackets and the infinite number of commuting conserved charges, are directly obtained from the asymptotic analysis and the conserved surface integrals in the gravitational theory. These boundary conditions have the particular property that they can also be interpreted as being defined in the near horizon region of spacetimes with event horizons. Black hole solutions are then naturally accommodated within our boundary conditions, and are described by static configurations associated to the corresponding member of the Gardner hierarchy. The thermodynamic properties of the black holes in the ensembles defined by our boundary conditions are also discussed. Finally, we show that our results can be naturally extended to the case of a vanishing cosmological constant, and the integrable system turns out to be precisely the same as in the case of AdS3.


Black Holes Classical Theories of Gravity Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for general relativity on AdS 3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A 85 (1981) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    O. Fuentealba et al., Integrable systems with BMS 3 Poisson structure and the dynamics of locally flat spacetimes, JHEP 01 (2018) 148 [arXiv:1711.02646] [INSPIRE].
  5. [5]
    M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Bunster, M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Generalized black holes in three-dimensional spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Sasaki and I. Yamanaka, Virasoro algebra, vertex operators, quantum sine-Gordon and solvable quantum field theories, Adv. Stud. Pure Math. 16 (1988) 271 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T. Eguchi and S.-K. Yang, Deformations of conformal field theories and soliton equations, Phys. Lett. B 224 (1989) 373 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev. D 94 (2016) 126019 [arXiv:1604.05327] [INSPIRE].
  11. [11]
    A. Dymarsky and K. Pavlenko, Generalized Gibbs ensemble of 2d CFTs at large central charge in the thermodynamic limit, JHEP 01 (2019) 098 [arXiv:1810.11025] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Thermal correlation functions of KdV charges in 2D CFT, JHEP 02 (2019) 044 [arXiv:1810.11053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Generalized Gibbs ensemble and the statistics of KdV charges in 2D CFT, JHEP 03 (2019) 075 [arXiv:1810.11054] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Dymarsky and K. Pavlenko, Exact generalized partition function of 2D CFTs at large central charge, JHEP 05 (2019) 077 [arXiv:1812.05108] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    E.M. Brehm and D. Das, On KdV characters in large c CFTs, arXiv:1901.10354 [INSPIRE].
  16. [16]
    A. Dymarsky and K. Pavlenko, Generalized eigenstate thermalization in 2d CFTs, arXiv:1903.03559 [INSPIRE].
  17. [17]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    H. Afshar, D. Grumiller, W. Merbis, A. Pérez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    W. Ames and C. Rogers, Nonlinear equations in the applied sciences, Math. Sci. Eng. 185, (1992).Google Scholar
  20. [20]
    R.M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968) 1202.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    R.M. Miura, C.S. Gardner and M.D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9 (1968) 1204.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M.D. Kruskal, R.M. Miura, C.S. Gardner and N.J. Zabusky, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970) 952.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Commun. Pure Appl. Math. 27 (1974) 97.CrossRefzbMATHGoogle Scholar
  24. [24]
    A. Das, Integrable models, volume 30, World Scientific, Singapore (1989).Google Scholar
  25. [25]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. Grumiller and W. Merbis, Near horizon dynamics of three dimensional black holes, preprint TUW-19-01, (2019) [arXiv:1906.10694] [INSPIRE].
  29. [29]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  31. [31]
    O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
  32. [32]
    D. Grumiller, A. Pérez, M. Sheikh-Jabbari, R. Troncoso and C. Zwikel, Spacetime structure near generic horizons and soft hair, preprint CECS-PHY-18/01.Google Scholar
  33. [33]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].
  34. [34]
    C. Bunster, A. Gomberoff and A. Pérez, Regge-Teitelboim analysis of the symmetries of electromagnetic and gravitational fields on asymptotically null spacelike surfaces, arXiv:1805.03728 [INSPIRE].
  35. [35]
    C. Bunster, A. Gomberoff and A. Pérez, Bondi-Metzner-Sachs invariance and electric-magnetic duality, arXiv:1905.07514 [INSPIRE].
  36. [36]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].
  38. [38]
    G. Barnich, C. Troessaert, D. Tempo and R. Troncoso, Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions, Phys. Rev. D 93 (2016) 084001 [arXiv:1512.05410] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    R. Benguria, P. Cordero and C. Teitelboim, Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry, Nucl. Phys. B 122 (1977) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.A. Gonzalez, D. Tempo and R. Troncoso, Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP 11 (2011) 066 [arXiv:1107.3647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Melnikov, F. Novaes, A. Pérez and R. Troncoso, Lifshitz scaling, microstate counting from number theory and black hole entropy, JHEP 06 (2019) 054 [arXiv:1808.04034] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    G.H. Hardy and S. Ramanujan, Asymptotic formulaae in combinatory analysis, Proc. London Math. Soc. s2-17 (1918) 75.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    E.M. Wright, Asymptotic partition formulae. III. Partitions into k-th powers, Acta Math. 63 (1934) 143.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    H.A. González, J. Matulich, M. Pino and R. Troncoso, Revisiting the asymptotic dynamics of general relativity on AdS 3, JHEP 12 (2018) 115 [arXiv:1809.02749] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D. Grumiller, A. Pérez, S. Prohazka, D. Tempo and R. Troncoso, Higher spin black holes with soft hair, JHEP 10 (2016) 119 [arXiv:1607.05360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Ammon, D. Grumiller, S. Prohazka, M. Riegler and R. Wutte, Higher-spin flat space cosmologies with soft hair, JHEP 05 (2017) 031 [arXiv:1703.02594] [INSPIRE].
  54. [54]
    F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    A.B. Zamolodchikov, Expectation value of composite field T \( \overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
  56. [56]
    A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T \( \overline{T} \) -deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Cardy, The T \( \overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    O. Aharony and T. Vaknin, The T \( \overline{T} \) deformation at large central charge, JHEP 05 (2018) 166 [arXiv:1803.00100] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    S. Datta and Y. Jiang, T \( \overline{T} \) deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of T \( \overline{T} \) deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys. 5 (2018) 048 [arXiv:1710.08415] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Chakraborty, A. Giveon and D. Kutasov, J \( \overline{T} \) deformed CFT 2 and string theory, JHEP 10 (2018) 057 [arXiv:1806.09667] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular covariance and uniqueness of J \( \overline{T} \) deformed CFTs, JHEP 01 (2019) 085 [arXiv:1808.08978] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    M. Guica, On correlation functions in J \( \overline{T} \) -deformed CFTs, J. Phys. A 52 (2019) 184003 [arXiv:1902.01434] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with T \( \overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    A. Giveon, N. Itzhaki and D. Kutasov, T \( \overline{T} \) and LST, JHEP 07 (2017) 122 [arXiv:1701.05576] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    P. Kraus, J. Liu and D. Marolf, Cutoff AdS 3 versus the T \( \overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Bzowski and M. Guica, The holographic interpretation of J \( \overline{T} \) -deformed CFTs, JHEP 01 (2019) 198 [arXiv:1803.09753] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Centro de Estudios Científicos (CECs)ValdiviaChile
  2. 2.Departamento de FísicaUniversidad de ConcepciónConcepciónChile

Personalised recommendations