Advertisement

The large D membrane paradigm for general four-derivative theory of gravity with a cosmological constant

  • Aditya Kar
  • Taniya MandalEmail author
  • Arunabha Saha
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

We find the membrane equations which describe the leading order in 1/D dynamics of black holes in the D → ∞ limit for the most general four-derivative theory of gravity in the presence of a cosmological constant. We work up to linear order in the parameter determining the strength of the four-derivative corrections to the gravity action and hence there are no ghost modes in the theory. We find that the effective membrane equations we obtain are the covariant version of the membrane equations in absence of the cosmological constant. We also find the world-volume stress tensor for the membrane whose conservation gives the membrane equations. We apply the membrane equations to predict the light quasi-normal mode spectrum of black holes and black branes in the theory of gravity under consideration.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Emparan and K. Tanabe, Holographic superconductivity in the large D expansion, JHEP 01 (2014) 145 [arXiv:1312.1108] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Emparan, D. Grumiller and K. Tanabe, Large-D gravity and low-D strings, Phys. Rev. Lett. 110 (2013) 251102 [arXiv:1303.1995] [INSPIRE].
  4. [4]
    R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, Phys. Rev. D 89 (2014) 064028 [arXiv:1401.1957] [INSPIRE].
  5. [5]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 106 [arXiv:1402.6215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of Black Holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    R. Suzuki and K. Tanabe, Stationary black holes: Large D analysis, JHEP 09 (2015) 193 [arXiv:1505.01282] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A Charged Membrane Paradigm at Large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    K. Tanabe, Instability of the de Sitter Reissner-Nordstrom black hole in the 1/D expansion, Class. Quant. Grav. 33 (2016) 125016 [arXiv:1511.06059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Bhattacharyya, P. Biswas, B. Chakrabarty, Y. Dandekar and A. Dinda, The large D black hole dynamics in AdS/dS backgrounds, JHEP 10 (2018) 033 [arXiv:1704.06076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Bhattacharyya, P. Biswas and Y. Dandekar, Black holes in presence of cosmological constant: second order in \( \frac{1}{D} \) , JHEP 10 (2018) 171 [arXiv:1805.00284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Kundu and P. Nandi, Large D gravity and charged membrane dynamics with nonzero cosmological constant, JHEP 12 (2018) 034 [arXiv:1806.08515] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Rozali and A. Vincart-Emard, On Brane Instabilities in the Large D Limit, JHEP 08 (2016) 166 [arXiv:1607.01747] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic Complementarity in Black Branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Bhattacharyya, P. Biswas and M. Patra, A leading-order comparison between fluid-gravity and membrane-gravity dualities, JHEP 05 (2019) 022 [arXiv:1807.05058] [INSPIRE].
  20. [20]
    S. Bhattacharyya, P. Biswas, A. Dinda and M. Patra, Fluid-gravity and membrane-gravity dualities — Comparison at subleading orders, JHEP 05 (2019) 054 [arXiv:1902.00854] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Andrade, R. Emparan and D. Licht, Rotating black holes and black bars at large D, JHEP 09 (2018) 107 [arXiv:1807.01131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Andrade, R. Emparan and D. Licht, Charged rotating black holes in higher dimensions, JHEP 02 (2019) 076 [arXiv:1810.06993] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Casalderrey-Solana, C.P. Herzog and B. Meiring, Holographic Bjorken Flow at Large-D, JHEP 01 (2019) 181 [arXiv:1810.02314] [INSPIRE].
  24. [24]
    Y. Dandekar, S. Kundu, S. Mazumdar, S. Minwalla, A. Mishra and A. Saha, An Action for and Hydrodynamics from the improved Large D membrane, JHEP 09 (2018) 137 [arXiv:1712.09400] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Y. Dandekar, S. Mazumdar, S. Minwalla and A. Saha, Unstable ‘black branes’ from scaled membranes at large D, JHEP 12 (2016) 140 [arXiv:1609.02912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Bhattacharyya et al., Currents and Radiation from the large D Black Hole Membrane, JHEP 05 (2017) 098 [arXiv:1611.09310] [INSPIRE].
  27. [27]
    Y. Dandekar, A. De, S. Mazumdar, S. Minwalla and A. Saha, The large D black hole Membrane Paradigm at first subleading order, JHEP 12 (2016) 113 [arXiv:1607.06475] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Bhattacharjee, S. Sarkar and A.C. Wall, Holographic entropy increases in quadratic curvature gravity, Phys. Rev. D 92 (2015) 064006 [arXiv:1504.04706] [INSPIRE].
  29. [29]
    S. Bhattacharyya, F.M. Haehl, N. Kundu, R. Loganayagam and M. Rangamani, Towards a second law for Lovelock theories, JHEP 03 (2017) 065 [arXiv:1612.04024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B. Chen, Z.-Y. Fan, P. Li and W. Ye, Quasinormal modes of Gauss-Bonnet black holes at large D, JHEP 01 (2016) 085 [arXiv:1511.08706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Chen and P.-C. Li, Static Gauss-Bonnet Black Holes at Large D, JHEP 05 (2017) 025 [arXiv:1703.06381] [INSPIRE].
  32. [32]
    B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet Black Strings at Large D, JHEP 10 (2017) 123 [arXiv:1707.09766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    B. Chen, P.-C. Li, Y. Tian and C.-Y. Zhang, Holographic Turbulence in Einstein-Gauss-Bonnet Gravity at Large D, JHEP 01 (2019) 156 [arXiv:1804.05182] [INSPIRE].
  34. [34]
    A. Saha, The large D Membrane Paradigm For Einstein-Gauss-Bonnet Gravity, JHEP 01 (2019) 028 [arXiv:1806.05201] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Andrade, C. Pantelidou and B. Withers, Large D holography with metric deformations, JHEP 09 (2018) 138 [arXiv:1806.00306] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research PunePuneIndia
  2. 2.Indian Institute of Science Education and Research BhopalBhopalIndia
  3. 3.University of GenevaGeneve 4Switzerland

Personalised recommendations