Advertisement

Linearised actions for \( \mathcal{N} \) -extended (higher-spin) superconformal gravity

  • Evgeny I. BuchbindeEmail author
  • Daniel Hutchings
  • Jessica Hutomo
  • Sergei M. Kuzenko
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

The off-shell actions for \( \mathcal{N} \) -extended conformal supergravity theories in three dimensions were formulated in [1, 2] for 1 ≤ \( \mathcal{N} \) ≤ 6 using a universal approach. Each action is generated by a closed super three-form which is constructed in terms of the constrained geometry of \( \mathcal{N} \) -extended conformal superspace. In this paper we initiate a program to recast these actions (and to formulate their higher-spin counterparts) in terms of unconstrained gauge prepotentials as integrals over the full superspace. We derive transverse projection operators in \( \mathcal{N} \) -extended Minkowski superspace and then use them to construct linearised rank-n super-Cotton tensors and off-shell \( \mathcal{N} \) -extended superconformal actions. We also propose off-shell gauge-invariant actions to describe massive higher-spin super-multiplets in \( \mathcal{N} \) -extended supersymmetry. Our analysis leads to general expressions for identically conserved higher-spin current multiplets in \( \mathcal{N} \) -extended supersymmetry.

Keywords

Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: Off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, N = 6 superconformal gravity in three dimensions from superspace, JHEP 01 (2014) 121 [arXiv:1308.5552] [INSPIRE].
  3. [3]
    A. Salam and J.A. Strathdee, On Superfields and Fermi-Bose Symmetry, Phys. Rev. D 11 (1975) 1521 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    E. Sokatchev, Projection Operators and Supplementary Conditions for Superfields with an Arbitrary Spin, Nucl. Phys. B 99 (1975) 96 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E.A. Ivanov and A.S. Sorin, Superfield formulation of OSP (1, 4) supersymmetry, J. Phys. A 13 (1980) 1159 [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    W. Siegel and S.J. Gates Jr., Superprojectors, Nucl. Phys. B 189 (1981) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V. Ogievetsky and E. Sokatchev, On Vector Superfield Generated by Supercurrent, Nucl. Phys. B 124 (1977) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    V.I. Ogievetsky and E. Sokatchev, Superfield Equations of Motion, J. Phys. A 10 (1977) 2021 [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.J. Gates Jr. and W. Siegel, (3/2, 1) Superfield of O(2) Supergravity, Nucl. Phys. B 164 (1980) 484 [INSPIRE].
  10. [10]
    S.J. Gates Jr., S.M. Kuzenko and J. Phillips, The Off-shell (3/2, 2) supermultiplets revisited, Phys. Lett. B 576 (2003) 97 [hep-th/0306288] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    S.M. Kuzenko and A.G. Sibiryakov, Free massless higher superspin superfields on the anti-de Sitter superspace, Phys. Atom. Nucl. 57 (1994) 1257 [arXiv:1112.4612] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E.I. Buchbinder, J. Hutomo and S.M. Kuzenko, Higher spin supercurrents in anti-de Sitter space, JHEP 09 (2018) 027 [arXiv:1805.08055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Hutomo, S.M. Kuzenko and D. Ogburn, N = 2 supersymmetric higher spin gauge theories and current multiplets in three dimensions, Phys. Rev. D 98 (2018) 125004 [arXiv:1807.09098] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. van Nieuwenhuizen, D = 3 Conformal Supergravity and Chern-Simons Terms, Phys. Rev. D 32 (1985) 872 [INSPIRE].
  16. [16]
    M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as d = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].
  17. [17]
    M. Nishimura and Y. Tanii, N = 6 conformal supergravity in three dimensions, JHEP 10 (2013) 123 [arXiv:1308.3960] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    U. Lindström and M. Roček, Superconformal Gravity in Three-dimensions as a Gauge Theory, Phys. Rev. Lett. 62 (1989) 2905 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys. A 8 (1993) 3371 [INSPIRE].
  20. [20]
    S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  21. [21]
    B.M. Zupnik and D.G. Pak, Superfield Formulation of the Simplest Three-dimensional Gauge Theories and Conformal Supergravities, Theor. Math. Phys. 77 (1988) 1070 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    S.M. Kuzenko, Prepotentials for N = 2 conformal supergravity in three dimensions, JHEP 12 (2012) 021 [arXiv:1209.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Deser and J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Deser, Cosmological topological supergravity, in Quantum Theory Of Gravity, S.M. Christensen ed., Adam Hilger, Bristol (1984), pp. 374-381 [INSPIRE].
  25. [25]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformal supergravities as Chern-Simons theories revisited, JHEP 03 (2013) 113 [arXiv:1212.6852] [INSPIRE].
  26. [26]
    P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.M. Kuzenko, Higher spin super-Cotton tensors and generalisations of the linear-chiral duality in three dimensions, Phys. Lett. B 763 (2016) 308 [arXiv:1606.08624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    S.M. Kuzenko and M. Tsulaia, Off-shell massive N = 1 supermultiplets in three dimensions, Nucl. Phys. B 914 (2017) 160 [arXiv:1609.06910] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    S.M. Kuzenko and D.X. Ogburn, Off-shell higher spin N = 2 supermultiplets in three dimensions, Phys. Rev. D 94 (2016) 106010 [arXiv:1603.04668] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E.S. Fradkin and V.Y. Linetsky, Superconformal Higher Spin Theory in the Cubic Approximation, Nucl. Phys. B 350 (1991) 274 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    E.I. Buchbinder, S.M. Kuzenko, J. La Fontaine and M. Ponds, Spin projection operators and higher-spin Cotton tensors in three dimensions, Phys. Lett. B 790 (2019) 389 [arXiv:1812.05331] [INSPIRE].
  35. [35]
    S.M. Kuzenko and M. Ponds, Topologically massive higher spin gauge theories, JHEP 10 (2018) 160 [arXiv:1806.06643] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    W. Siegel, Unextended Superfields in Extended Supersymmetry, Nucl. Phys. B 156 (1979) 135 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G.W. Gibbons, C.N. Pope and E. Sezgin, The General Supersymmetric Solution of Topologically Massive Supergravity, Class. Quant. Grav. 25 (2008) 205005 [arXiv:0807.2613] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    R. Andringa, E.A. Bergshoeff, M. de Roo, O. Hohm, E. Sezgin and P.K. Townsend, Massive 3D Supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [INSPIRE].
  39. [39]
    C.N. Pope and P.K. Townsend, Conformal Higher Spin in (2 + 1)-dimensions, Phys. Lett. B 225 (1989) 245 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    E.I. Buchbinder, S.M. Kuzenko and I.B. Samsonov, Implications of \( \mathcal{N} \) = 4 superconformal symmetry in three spacetime dimensions, JHEP 08 (2015) 125 [arXiv:1507.00221] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    S.M. Kuzenko and M. Ponds, Conformal geometry and (super) conformal higher-spin gauge theories, JHEP 05 (2019) 113 [arXiv:1902.08010] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Higher derivative couplings and massive supergravity in three dimensions, JHEP 09 (2015) 081 [arXiv:1506.09063] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, On Higher Derivatives in 3D Gravity and Higher Spin Gauge Theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    E.A. Bergshoeff, M. Kovacevic, J. Rosseel, P.K. Townsend and Y. Yin, A spin-4 analog of 3D massive gravity, Class. Quant. Grav. 28 (2011) 245007 [arXiv:1109.0382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    J. Hutomo and S.M. Kuzenko, Higher spin supermultiplets in three dimensions: (2, 0) AdS supersymmetry, Phys. Lett. B 787 (2018) 175 [arXiv:1809.00802] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    I.L. Buchbinder, T.V. Snegirev and Y.M. Zinoviev, Lagrangian formulation of the massive higher spin supermultiplets in three dimensional space-time, JHEP 10 (2015) 148 [arXiv:1508.02829] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    I.L. Buchbinder, T.V. Snegirev and Y.M. Zinoviev, Lagrangian description of massive higher spin supermultiplets in AdS 3 space, JHEP 08 (2017) 021 [arXiv:1705.06163] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    I.L. Buchbinder, T.V. Snegirev and Y.M. Zinoviev, Gauge invariant Lagrangian formulation of massive higher spin fields in (A)dS 3 space, Phys. Lett. B 716 (2012) 243 [arXiv:1207.1215] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    I.L. Buchbinder, T.V. Snegirev and Y.M. Zinoviev, Frame-like gauge invariant Lagrangian formulation of massive fermionic higher spin fields in AdS 3 space, Phys. Lett. B 738 (2014) 258 [arXiv:1407.3918] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y.M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].
  52. [52]
    R.R. Metsaev, Gauge invariant formulation of massive totally symmetric fermionic fields in (A) dS space, Phys. Lett. B 643 (2006) 205 [hep-th/0609029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    A.A. Nizami, T. Sharma and V. Umesh, Superspace formulation and correlation functions of 3d superconformal field theories, JHEP 07 (2014) 022 [arXiv:1308.4778] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.-H. Park, Superconformal symmetry in three-dimensions, J. Math. Phys. 41 (2000) 7129 [hep-th/9910199] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    E.I. Buchbinder, S.M. Kuzenko and I.B. Samsonov, Superconformal field theory in three dimensions: Correlation functions of conserved currents, JHEP 06 (2015) 138 [arXiv:1503.04961] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    L. Mezincescu and P.K. Townsend, Quantum 3D Superstrings, Phys. Rev. D 84 (2011) 106006 [arXiv:1106.1374] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace, IOP, Bristol (1995), revised edition (1998) [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Evgeny I. Buchbinde
    • 1
    Email author
  • Daniel Hutchings
    • 1
  • Jessica Hutomo
    • 1
  • Sergei M. Kuzenko
    • 1
  1. 1.Department of Physics M013The University of Western AustraliaCrawleyAustralia

Personalised recommendations