Advertisement

BSM W W production with a jet veto

  • Luke Arpino
  • Andrea Banfi
  • Sebastian Jäger
  • Nikolas KauerEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the impact on W W production of the unique dimension-six operator coupling gluons to the Higgs field. In order to study this process, we have to appropriately model the effect of a veto on additional jets. This requires the resummation of large logarithms of the ratio of the maximum jet transverse momentum and the invariant mass of the W boson pair. We have performed such resummation at the appropriate accuracy for the Standard Model (SM) background and for a signal beyond the SM (BSM), and devised a simple method to interface jet-veto resummations with fixed-order event generators. This resulted in the fast numerical code MCFM-RE, the Resummation Edition of the fixed-order code MCFM. We compared our resummed predictions with parton-shower event generators and assessed the size of effects, such as limited detector acceptances, hadronisation and the underlying event, that were not included in our resummation. We have then used the code to compare the sensitivity of W W and Z Z production at the HL-LHC to the considered higher-dimension operator. We have found that W W can provide complementary sensitivity with respect to Z Z, provided one is able to control theory uncertainties at the percent-level. Our method is general and can be applied to the production of any colour singlet, both within and beyond the SM.

Keywords

Resummation Beyond Standard Model Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    ATLAS collaboration, Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the H → W W ∗ → eνμν decay channel in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Phys. Lett.B 789 (2019) 508 [arXiv:1808.09054] [INSPIRE].
  2. [2]
    ATLAS collaboration, Search for heavy resonances decaying into W W in the eνμν final state in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the W +W production cross section in pp collisions at a centre-of-mass energy of \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, Phys. Lett.B 773 (2017) 354 [arXiv:1702.04519] [INSPIRE].
  4. [4]
    ATLAS collaboration, Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 22ν final states with the ATLAS detector, Phys. Lett.B 786 (2018) 223 [arXiv:1808.01191] [INSPIRE].
  5. [5]
    ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq final states in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, JHEP03 (2018) 009 [arXiv:1708.09638] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for diboson resonances with boson-tagged jets in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Phys. Lett.B 777 (2018) 91 [arXiv:1708.04445] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for W W/W Z resonance production in ℓνqq final states in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, JHEP03 (2018) 042 [arXiv:1710.07235] [INSPIRE].
  8. [8]
    ATLAS collaboration, Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector, JHEP04 (2019) 048 [arXiv:1902.05892] [INSPIRE].
  9. [9]
    CMS collaboration, Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction and constraints on anomalous triple gauge couplings at \( \sqrt{s} \)= 13 TeV, Eur. Phys. J.C 78 (2018) 165 [Erratum ibid. C 78 (2018) 515] [arXiv:1709.08601] [INSPIRE].
  10. [10]
    CMS collaboration, Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s} \)= 13 TeV, Phys. Lett.B 791 (2019) 96 [arXiv:1806.05246] [INSPIRE].
  11. [11]
    CMS collaboration, Measurements of the Higgs boson width and anomalous HV V couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev.D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].
  12. [12]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett.B 219 (1989) 488 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP08 (2012) 116 [arXiv:1206.4803] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    N. Kauer, Interference effects for H → W W/ZZ → ℓ \( \overline{v} \) \( \overline{\mathrm{\ell}} \)ν searches in gluon fusion at the LHC, JHEP12 (2013) 082 [arXiv:1310.7011] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev.D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  18. [18]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  19. [19]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev.D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP06 (2018) 146 [arXiv:1803.03252] [INSPIRE].
  22. [22]
    A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, Zh. Eksp. Teor. Fiz.147 (2015) 410 [arXiv:1406.6338] [INSPIRE].Google Scholar
  23. [23]
    M. Buschmann et al., Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production, JHEP02 (2015) 038 [arXiv:1410.5806] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    ATLAS collaboration, Measurement of W +W production in pp collisions at \( \sqrt{s} \)= 7 TeV with the ATLAS detector and limits on anomalous W W Z and W W γ couplings, Phys. Rev.D 87 (2013) 112001 [Erratum ibid. D 88 (2013) 079906] [arXiv:1210.2979] [INSPIRE].
  25. [25]
    CMS collaboration, Measurement of the W +W cross section in pp collisions at \( \sqrt{s} \)= 7 TeV and limits on anomalous W W γ and W W Z couplings, Eur. Phys. J.C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].
  26. [26]
    CMS collaboration, Measurement of W +W and ZZ production cross sections in pp collisions at \( \sqrt{s} \)= 8 TeV, Phys. Lett.B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].
  27. [27]
    P. Jaiswal and T. Okui, Explanation of the W W excess at the LHC by jet-veto resummation, Phys. Rev.D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].
  28. [28]
    P.F. Monni and G. Zanderighi, On the excess in the inclusive W +W → l +l ν \( \overline{v} \)cross section, JHEP05 (2015) 013 [arXiv:1410.4745] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for jet-veto cross sections, Eur. Phys. J.C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    E. Re, M. Wiesemann and G. Zanderighi, NNLOPS accurate predictions for W +W production, JHEP12 (2018) 121 [arXiv:1805.09857] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    P. Jaiswal, P. Meade and H. Ramani, Precision diboson measurements and the interplay of pT and jet-veto resummations, Phys. Rev.D 93 (2016) 093007 [arXiv:1509.07118] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Bellm et al., Anomalous coupling, top-mass and parton-shower effects in W +W production, JHEP05 (2016) 106 [arXiv:1602.05141] [INSPIRE].
  33. [33]
    I. Moult and I.W. Stewart, Jet vetoes interfering with H → W W , JHEP09 (2014) 129 [arXiv:1405.5534] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  35. [35]
    ATLAS collaboration, Measurement of the transverse momentum and φ ηdistributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s} \)= 8 TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
  36. [36]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett.109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3LL p+ NNLO predictions for the Higgs cross section with a jet veto, JHEP10 (2013) 125 [arXiv:1307.0025] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p Tresummation in Higgs production at N N LL′ + N N LO, Phys. Rev.D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  39. [39]
  40. [40]
    B. Fuks and R. Ruiz, A comprehensive framework for studying Wand Zbosons at hadron colliders with automated jet veto resummation, JHEP05 (2017) 032 [arXiv:1701.05263] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  42. [42]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP06 (2012) 159 [arXiv:1203.5773] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys.B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  44. [44]
  45. [45]
    ATLAS collaboration, Measurement of the W +W production cross section in proton-proton collisions at \( \sqrt{s} \)= 8 TeV with the ATLAS detector, Phys. Lett.B 763 (2016) 114 [arXiv:1608.03086].
  46. [46]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys.B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].
  47. [47]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  50. [50]
    A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3LO+NNLL with small-R resummation, JHEP04 (2016) 049 [arXiv:1511.02886] [INSPIRE].
  51. [51]
    R. Boughezal et al., Combining resummed Higgs predictions across jet bins, Phys. Rev.D 89 (2014) 074044 [arXiv:1312.4535] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP05 (2014) 022 [arXiv:1312.3317] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    ATLAS collaboration, Search for the standard model Higgs boson in the H → WW(*) → ℓνℓν decay mode with 4.7 fb −1of ATLAS data at \( \sqrt{s} \)= 7 TeV, Phys. Lett.B 716 (2012) 62 [arXiv:1206.0756] [INSPIRE].
  54. [54]
    CMS collaboration, Search for the standard model Higgs boson decaying to W +W in the fully leptonic final state in pp collisions at \( \sqrt{s} \)= 7 TeV, Phys. Lett.B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].
  55. [55]
    D.L. Rainwater and D. Zeppenfeld, Observing H → W W → e ±μ∓ p Tin weak boson fusion with dual forward jet tagging at the CERN LHC, Phys. Rev.D 60 (1999) 113004 [Erratum ibid. D 61 (2000) 099901] [hep-ph/9906218] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  57. [57]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  59. [59]
    P. Nason and G. Zanderighi, W +W , W Z and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J.C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].
  60. [60]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  61. [61]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP01 (2011) 053 [arXiv:1010.0568] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  63. [63]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  64. [64]
    S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].
  65. [65]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  66. [66]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
  67. [67]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev.D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  70. [70]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP08 (2004) 062 [hep-ph/0407287] [INSPIRE].
  71. [71]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett.B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  72. [72]
    J.K.L. Michel, P. Pietrulewicz and F.J. Tackmann, Jet veto resummation with jet rapidity cuts, JHEP04 (2019) 142 [arXiv:1810.12911] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    T. Gehrmann et al., W +W production at hadron colliders in next to next to leading order QCD, Phys. Rev. Lett.113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett.B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].
  75. [75]
    F. Caola et al., Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP06 (2015) 129 [arXiv:1503.08759] [INSPIRE].
  76. [76]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for gg → V 1V 2→ 4 leptons, JHEP06 (2015) 197 [arXiv:1503.08835] [INSPIRE].
  77. [77]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev.D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].ADSGoogle Scholar
  78. [78]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W +W production through gluon fusion, Phys. Lett.B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].CrossRefADSGoogle Scholar
  79. [79]
    F. Caola et al., QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP07 (2016) 087 [arXiv:1605.04610] [INSPIRE].CrossRefADSGoogle Scholar
  80. [80]
    J.M. Campbell, R.K. Ellis, M. Czakon and S. Kirchner, Two loop correction to interference in gg → ZZ, JHEP08 (2016) 011 [arXiv:1605.01380] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    M. Grazzini, S. Kallweit, M. Wiesemann and J.Y. Yook, ZZ production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel, JHEP03 (2019) 070 [arXiv:1811.09593] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett.B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].CrossRefADSGoogle Scholar
  83. [83]
    S. Kallweit and M. Wiesemann, ZZ production at the LHC: NNLO predictions for 22ν and 4ℓ signatures, Phys. Lett.B 786 (2018) 382 [arXiv:1806.05941] [INSPIRE].CrossRefADSGoogle Scholar
  84. [84]
    M. Grazzini et al., W +W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP08 (2016) 140 [arXiv:1605.02716] [INSPIRE].CrossRefADSGoogle Scholar
  85. [85]
    M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J.C 78 (2018) 537 [arXiv:1711.06631] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ±Z production at hadron colliders in NNLO QCD, Phys. Lett.B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ±Z production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP05 (2017) 139 [arXiv:1703.09065] [INSPIRE].CrossRefADSGoogle Scholar
  88. [88]
    CMS collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s} \)= 7 and 8 TeV, JHEP04 (2016) 005 [arXiv:1512.08377] [INSPIRE].
  89. [89]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  90. [90]
    A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J.C 21 (2001) 225 [hep-ph/0104062] [INSPIRE].
  91. [91]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J.C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].CrossRefADSGoogle Scholar
  92. [92]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1of proton-proton collision data at \( \sqrt{s} \)= 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2019-005 (2018).
  93. [93]
    S. Pascoli, R. Ruiz and C. Weiland, Safe jet vetoes, Phys. Lett.B 786 (2018) 106 [arXiv:1805.09335] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    S. Pascoli, R. Ruiz and C. Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches at \( \sqrt{s} \)= 14, 27 and 100 TeV, JHEP06 (2019) 049 [arXiv:1812.08750] [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    J.M. Campbell and R.K. Ellis, Radiative corrections to Zb \( \overline{b} \)production, Phys. Rev.D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of SussexBrightonU.K.
  2. 2.Department of Physics, Royal HollowayUniversity of LondonEghamU.K.

Personalised recommendations