Entanglement entropy in generalised quantum Lifshitz models

  • J. Angel-Ramelli
  • V. Giangreco M. PulettiEmail author
  • L. Thorlacius
Open Access
Regular Article - Theoretical Physics


We compute universal finite corrections to entanglement entropy for generalised quantum Lifshitz models in arbitrary odd spacetime dimensions. These are generalised free field theories with Lifshitz scaling symmetry, where the dynamical critical exponent z equals the number of spatial dimensions d, and which generalise the 2+1-dimensional quantum Lifshitz model to higher dimensions. We analyse two cases: one where the spatial manifold is a d-dimensional sphere and the entanglement entropy is evaluated for a hemisphere, and another where a d-dimensional flat torus is divided into two cylinders. In both examples the finite universal terms in the entanglement entropy are scale invariant and depend on the compactification radius of the scalar field.


Conformal Field Theory Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    B. Hsu, M. Mulligan, E. Fradkin and E.-A. Kim, Universal entanglement entropy in 2D conformal quantum critical points, Phys. Rev. B 79 (2009) 115421 [arXiv:0812.0203] [INSPIRE].
  2. [2]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].
  3. [3]
    L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].
  4. [4]
    J. Eisert, Colloquium: area laws for the entanglement entropy, Rev. Mod. Phys. 82 (2010) 277.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rept. 646 (2016) 1.ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].
  7. [7]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  9. [9]
    M. Rangamani and T. Takayanagi, Holographic entanglement entropy, Lect. Notes Phys. 931 (2017) 1 [arXiv:1609.01287].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys. 90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Keranen, W. Sybesma, P. Szepietowski and L. Thorlacius, Correlation functions in theories with Lifshitz scaling, JHEP 05 (2017) 033 [arXiv:1611.09371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals Phys. 310 (2004) 493 [cond-mat/0311466] [INSPIRE].
  15. [15]
    C. Brust and K. Hinterbichler, Free □ k scalar conformal field theory, JHEP 02 (2017) 066 [arXiv:1607.07439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Beccaria and A.A. Tseytlin, Partition function of free conformal fields in 3-plet representation, JHEP 05 (2017) 053 [arXiv:1703.04460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Y. Nakayama, Hidden global conformal symmetry without Virasoro extension in theory of elasticity, Annals Phys. 372 (2016) 392 [arXiv:1604.00810] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Scalar field theories with polynomial shift symmetries, Commun. Math. Phys. 340 (2015) 985 [arXiv:1412.1046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Cascading multicriticality in nonrelativistic spontaneous symmetry breaking, Phys. Rev. Lett. 115 (2015) 241601 [arXiv:1507.06992] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Fradkin and J.E. Moore, Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum, Phys. Rev. Lett. 97 (2006) 050404 [cond-mat/0605683] [INSPIRE].
  23. [23]
    B. Hsu and E. Fradkin, Universal behavior of entanglement in 2D quantum critical dimer models, J. Stat. Mech. 1009 (2010) P09004 [arXiv:1006.1361] [INSPIRE].MathSciNetGoogle Scholar
  24. [24]
    J.-M. Stéphan, Shannon and entanglement entropies of one- and two-dimensional critical wave functions, Phys. Rev. B 80 (2009) 184421.ADSCrossRefGoogle Scholar
  25. [25]
    M. Oshikawa, Boundary conformal field theory and entanglement entropy in two-dimensional quantum Lifshitz critical point, arXiv:1007.3739 [INSPIRE].
  26. [26]
    M.P. Zaletel, J.H. Bardarson and J.E. Moore, Logarithmic terms in entanglement entropies of 2D quantum critical points and Shannon entropies of spin chains, Phys. Rev. Lett. 107 (2011) 020402 [arXiv:1103.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Zhou, X. Chen, T. Faulkner and E. Fradkin, Entanglement entropy and mutual information of circular entangling surfaces in the 2 + 1-dimensional quantum Lifshitz model, J. Stat. Mech. 1609 (2016) 093101 [arXiv:1607.01771] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    J.-M. Stephan, G. Misguich and V. Pasquier, Renyi entanglement entropies in quantum dimer models: from criticality to topological order, J. Stat. Mech. 1202 (2012) P02003 [arXiv:1108.1699] [INSPIRE].Google Scholar
  29. [29]
    J.L. Cardy and I. Peschel, Finite size dependence of the free energy in two-dimensional critical systems, Nucl. Phys. B 300 (1988) 377 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.M. Stéphan, S. Furukawa, G. Misguich and V. Pasquier, Shannon and entanglement entropies of one- and two-dimensional critical wave functions, Phys. Rev. B 80 (2009) 184421.ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Stéphan, H. Ju, P. Fendley and R.G. Melko, Entanglement in gapless resonating-valence-bond states, New J. Phys. 15 (2013) 015004.ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    X. Chen, G.Y. Cho, T. Faulkner and E. Fradkin, Scaling of entanglement in 2+1-dimensional scale-invariant field theories, J. Stat. Mech. 1502 (2015) P02010 [arXiv:1412.3546] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    X. Chen, W. Witczak-Krempa, T. Faulkner and E. Fradkin, Two-cylinder entanglement entropy under a twist, J. Stat. Mech. 1704 (2017) 043104.MathSciNetCrossRefGoogle Scholar
  34. [34]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  36. [36]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    V. Keränen and L. Thorlacius, Holographic geometries for condensed matter applications, in the proceedings of the 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG13), July 1-7, Stockholm, Sweden (2015), arXiv:1307.2882 [INSPIRE].
  39. [39]
    S.A. Gentle and S. Vandoren, Lifshitz entanglement entropy from holographic cMERA, JHEP 07 (2018) 013 [arXiv:1711.11509] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    T. He, J.M. Magan and S. Vandoren, Entanglement entropy in Lifshitz theories, SciPost Phys. 3 (2017) 034 [arXiv:1705.01147] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement in Lifshitz-type quantum field theories, JHEP 07 (2017) 120 [arXiv:1705.00483] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    J.S. Dowker, Determinants and conformal anomalies of GJMS operators on spheres, J. Phys. A 44 (2011) 115402 [arXiv:1010.0566] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1997).Google Scholar
  44. [44]
    P.H. Ginsparg, Applied conformal field theory, in the proceedings of the Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, June 28-August 5, Les Houches, France (1988), hep-th/9108028 [INSPIRE].
  45. [45]
    L.J.M. C.R. Graham, R. Jenne and G.A.J. Sparling, Conformally invariant powers of the laplacian. I: existence, J. London Math. Soc. S2-46 (1992) 557.Google Scholar
  46. [46]
    T.P. Branson, P.B. Gilkey and D.V. Vassilevich, The asymptotics of the Laplacian on a manifold with boundary. 2, Boll. Union. Mat. Ital. 11B (1997) 39 [hep-th/9504029] [INSPIRE].
  47. [47]
    A.R. Gover and K. Hirachi, Conformally invariant powers of the Laplacian: a complete non-existence theorem, J. Amer. Math. Soc. 17 (2004) 389.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Gover, Laplacian operators and q-curvature on conformally einstein manifolds, math/0506037.
  49. [49]
    C.R. Graham, Conformal powers of the laplacian via stereographic projection, SIGMA 3 (2007) 121 [arXiv:0711.4798].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    C. Fefferman and C. R. Graham, Juhl’s formulae for gjms operators and q-curvatures, arXiv:1203.0360.
  51. [51]
    S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds (summary), SIGMA 4 (2008) 036 [arXiv:0803.4331].MathSciNetzbMATHGoogle Scholar
  52. [52]
    A. Juhl, On conformally covariant powers of the laplacian, arXiv:0905.3992.
  53. [53]
    A. Juhl, Explicit formulas for GJMS-operators and Q-curvatures, arXiv:1108.0273 [INSPIRE].
  54. [54]
    H. Baum and A. Juhl, Conformal differential geometry, Birkhäuser, Basel Switzerland (2010).CrossRefzbMATHGoogle Scholar
  55. [55]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  56. [56]
    P. Chang and J. Dowker, Vacuum energy on orbifold factors of spheres, Nucl. Phys. B 395 (1993) 407.ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    J.S. Dowker, Effective action in spherical domains, Commun. Math. Phys. 162 (1994) 633 [hep-th/9306154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    J.S. Dowker, Numerical evaluation of spherical GJMS determinants for even dimensions, arXiv:1310.0759 [INSPIRE].
  59. [59]
    J.S. Dowker, Functional determinants on spheres and sectors, J. Math. Phys. 35 (1994) 4989 [Erratum ibid. 36 (1995) 988] [hep-th/9312080] [INSPIRE].
  60. [60]
    J.S. Dowker, The boundary F-theorem for free fields, arXiv:1407.5909 [INSPIRE].
  61. [61]
    D. Gaiotto, Boundary F-maximization, arXiv:1403.8052 [INSPIRE].
  62. [62]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    D.E. Diaz, Polyakov formulas for GJMS operators from AdS/CFT, JHEP 07 (2008) 103 [arXiv:0803.0571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    F. Bugini and D.E. Díaz, Holographic Weyl anomaly for GJMS operators: one Laplacian to rule them all, JHEP 02 (2019) 188 [arXiv:1811.10380] [INSPIRE].
  65. [65]
    W. Witczak-Krempa, L.E. Hayward Sierens and R.G. Melko, Cornering gapless quantum states via their torus entanglement, Phys. Rev. Lett. 118 (2017) 077202 [arXiv:1603.02684] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  67. [67]
    P. Bueno and W. Witczak-Krempa, Holographic torus entanglement and its renormalization group flow, Phys. Rev. D 95 (2017) 066007 [arXiv:1611.01846] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    J.S. Dowker, A technical note on the calculation of GJMS (Rac and Di) operator determinants, arXiv:1807.11872 [INSPIRE].
  69. [69]
    A.O. Barvinsky et al., Heat kernel methods for lifshitz theories, JHEP 06 (2017) 063.ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones, JHEP 12 (2015) 168 [arXiv:1508.00587] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  71. [71]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist operators, JHEP 09 (2015) 091 [arXiv:1507.06997] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    P. Bueno and W. Witczak-Krempa, Bounds on corner entanglement in quantum critical states, Phys. Rev. B 93 (2016) 045131 [arXiv:1511.04077] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On shape dependence and RG flow of entanglement entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    H. Elvang and M. Hadjiantonis, Exact results for corner contributions to the entanglement entropy and Rényi entropies of free bosons and fermions in 3d, Phys. Lett. B 749 (2015) 383 [arXiv:1506.06729] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    R.-X. Miao, A holographic proof of the universality of corner entanglement for CFTs, JHEP 10 (2015) 038 [arXiv:1507.06283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    D.-W. Pang, Corner contributions to holographic entanglement entropy in non-conformal backgrounds, JHEP 09 (2015) 133 [arXiv:1506.07979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    M. Alishahiha, A.F. Astaneh, P. Fonda and F. Omidi, Entanglement Entropy for Singular Surfaces in Hyperscaling violating Theories, JHEP 09 (2015) 172 [arXiv:1507.05897] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    T. Zhou, Entanglement entropy of local operators in quantum Lifshitz theory, J. Stat. Mech. 1609 (2016) 093106.MathSciNetCrossRefGoogle Scholar
  81. [81]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement evolution in Lifshitz-type scalar theories, JHEP 01 (2019) 137 [arXiv:1811.11470] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    E. Plamadeala and E. Fradkin, Scrambling in the quantum Lifshitz model, J. Stat. Mech. 1806 (2018) 063102.MathSciNetCrossRefGoogle Scholar
  83. [83]
    H. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and integrals, Elsevier, The Netherlands (2012).zbMATHGoogle Scholar
  84. [84]
    E. Barnes, The theory of the moltiple Gamma function, Trans. Camb. Philos. Soc. 19 (1904) 374.Google Scholar
  85. [85]
    V.S. Adamchik, Multiple gamma function and its application to computation of series, submitted to Ramanujan J. (2003), math/0308074.
  86. [86]
    E. Elizalde, Multidimensional extension of the generalized Chowla-Selberg formula, Commun. Math. Phys. 198 (1998) 83 [hep-th/9707257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    E. Elizalde, Ten physical applications of spectral zeta functions, Lecture Notes in Physics volume 855, Springer, Germany (2012).Google Scholar
  88. [88]
    K. Kirsten, P. Loya and J. Park, Zeta functions of Dirac and Laplace-type operators over finite cylinders, Annals Phys. 321 (2006) 1814 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    E. Elizalde and M. Tierz, Multiplicative anomaly and zeta factorization, J. Math. Phys. 45 (2004) 1168 [hep-th/0402186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • J. Angel-Ramelli
    • 1
  • V. Giangreco M. Puletti
    • 1
    Email author
  • L. Thorlacius
    • 1
    • 2
  1. 1.University of Iceland, Science InstituteReykjavíkIceland
  2. 2.The Oskar Klein Centre for Cosmoparticle Physics & Department of PhysicsStockholm UniversityStockholmSweden

Personalised recommendations