Advertisement

Bi-gravity with a single graviton

  • Sergei Alexandrov
  • Simone SpezialeEmail author
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

We analyze a bi-gravity model based on the first order formalism, having as fundamental variables two tetrads but only one Lorentz connection. We show that on a large class of backgrounds its linearization agrees with general relativity. At the non-linear level, additional degrees of freedom appear, and we reveal the mechanism hiding them around the special backgrounds. We further argue that they do not contain a massive graviton, nor the Boulware-Deser ghost. The model thus propagates only one graviton, whereas the nature of the additional degrees of freedom remains to be investigated. We also present a foliation-preserving deformation of the model, which keeps all symmetries except time diffeomorphisms and has three degrees of freedom.

Keywords

Classical Theories of Gravity Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
  2. [2]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  5. [5]
    K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].
  6. [6]
    A.H. Chamseddine and V. Mukhanov, Massive gravity simplified: a quadratic action, JHEP 08 (2011) 091 [arXiv:1106.5868] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Alexandrov, K. Krasnov and S. Speziale, Chiral description of ghost-free massive gravity, JHEP 06 (2013) 068 [arXiv:1212.3614] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Alexandrov and K. Krasnov, Hamiltonian analysis of non-chiral Plebanski theory and its generalizations, Class. Quant. Grav. 26 (2009) 055005 [arXiv:0809.4763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Speziale, Bi-metric theory of gravity from the non-chiral Plebanski action, Phys. Rev. D 82 (2010) 064003 [arXiv:1003.4701] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Beke, G. Palmisano and S. Speziale, Pauli-Fierz mass term in modified Plebanski gravity, JHEP 03 (2012) 069 [arXiv:1112.4051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Gruzinov, All Fierz-Paulian massive gravity theories have ghosts or superluminal modes, arXiv:1106.3972 [INSPIRE].
  12. [12]
    P. de Fromont, C. de Rham, L. Heisenberg and A. Matas, Superluminality in the bi- and multi-Galileon, JHEP 07 (2013) 067 [arXiv:1303.0274] [INSPIRE].
  13. [13]
    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Massive gravity acausality redux, Phys. Lett. B 726 (2013) 544 [arXiv:1306.5457] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Deser, M. Sandora and A. Waldron, Nonlinear partially massless from massive gravity?, Phys. Rev. D 87 (2013) 101501 [arXiv:1301.5621] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. De Felice, A.E. Gümrükçüoğlu and S. Mukohyama, Massive gravity: nonlinear instability of the homogeneous and isotropic universe, Phys. Rev. Lett. 109 (2012) 171101 [arXiv:1206.2080] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. De Felice, A.E. Gümrükçüoğlu, C. Lin and S. Mukohyama, On the cosmology of massive gravity, Class. Quant. Grav. 30 (2013) 184004 [arXiv:1304.0484] [INSPIRE].
  17. [17]
    E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav. 30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Mukohyama, Nonlinear massive gravity and cosmology, in Proceedings, 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG13), Stockholm, Sweden, 1-7 July 2012, World Scientific, Singapore (2015), pg. 548 [INSPIRE].
  19. [19]
    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    J.F. Donoghue and G. Menezes, Gauge assisted quadratic gravity: a framework for UV complete quantum gravity, Phys. Rev. D 97 (2018) 126005 [arXiv:1804.04980] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    C. de Rham, A. Matas and A.J. Tolley, New kinetic terms for massive gravity and multi-gravity: a no-go in vielbein form, Class. Quant. Grav. 32 (2015) 215027 [arXiv:1505.00831] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C. de Rham, A. Matas and A.J. Tolley, New kinetic interactions for massive gravity?, Class. Quant. Grav. 31 (2014) 165004 [arXiv:1311.6485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    C. de Rham and A.J. Tolley, Vielbein to the rescue? Breaking the symmetric vielbein condition in massive gravity and multigravity, Phys. Rev. D 92 (2015) 024024 [arXiv:1505.01450] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    T. Jacobson, Einstein-aether gravity: a status report, PoS (QG-PH) 020 (2007) [arXiv:0801.1547] [INSPIRE].
  28. [28]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    A.O. Barvinsky, N. Kolganov, A. Kurov and D. Nesterov, Dynamics of the generalized unimodular gravity theory, Phys. Rev. D 100 (2019) 023542 [arXiv:1903.09897] [INSPIRE].ADSGoogle Scholar
  30. [30]
    F.W. Hehl, P. Von Der Heyde, G.D. Kerlick and J.M. Nester, General relativity with spin and torsion: foundations and prospects, Rev. Mod. Phys. 48 (1976) 393 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    P. Peldan, Actions for gravity, with generalizations: a review, Class. Quant. Grav. 11 (1994) 1087 [gr-qc/9305011] [INSPIRE].
  32. [32]
    S. Alexandrov, Canonical structure of tetrad bimetric gravity, Gen. Rel. Grav. 46 (2014) 1639 [arXiv:1308.6586] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    V. Cuesta, M. Montesinos, M. Velazquez and J.D. Vergara, Topological field theories in n-dimensional spacetimes and Cartan’s equations, Phys. Rev. D 78 (2008) 064046 [arXiv:0809.2741] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411 [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  37. [37]
    S. Alexandrov and Z. Kadar, Timelike surfaces in Lorentz covariant loop gravity and spin foam models, Class. Quant. Grav. 22 (2005) 3491 [gr-qc/0501093] [INSPIRE].
  38. [38]
    S. Alexandrov and S. Speziale, First order gravity on the light front, Phys. Rev. D 91 (2015) 064043 [arXiv:1412.6057] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S. Yu. Alexandrov and D.V. Vassilevich, Path integral for the Hilbert-Palatini and Ashtekar gravity, Phys. Rev. D 58 (1998) 124029 [gr-qc/9806001] [INSPIRE].
  40. [40]
    S. Alexandrov, SO(4, C) covariant Ashtekar-Barbero gravity and the Immirzi parameter, Class. Quant. Grav. 17 (2000) 4255 [gr-qc/0005085] [INSPIRE].
  41. [41]
    M.P. Reisenberger, New constraints for canonical general relativity, Nucl. Phys. B 457 (1995) 643 [gr-qc/9505044] [INSPIRE].
  42. [42]
    S. Alexandrov, On choice of connection in loop quantum gravity, Phys. Rev. D 65 (2002) 024011 [gr-qc/0107071] [INSPIRE].
  43. [43]
    D. Blas, O. Pujolàs and S. Sibiryakov, On the extra mode and inconsistency of Hořava gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Geiller and K. Noui, A remarkably simple theory of 3d massive gravity, JHEP 04 (2019) 091 [arXiv:1812.01018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    D. Blas and E. Lim, Phenomenology of theories of gravity without Lorentz invariance: the preferred frame case, Int. J. Mod. Phys. D 23 (2015) 1443009 [arXiv:1412.4828] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    G. Gubitosi, F. Piazza and F. Vernizzi, The effective field theory of dark energy, JCAP 02 (2013) 032 [arXiv:1210.0201] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D 53 (1996) 5966 [gr-qc/9511026] [INSPIRE].
  48. [48]
    C. Deffayet and T. Jacobson, On horizon structure of bimetric spacetimes, Class. Quant. Grav. 29 (2012) 065009 [arXiv:1107.4978] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    C. Rovelli, Quantum gravity, Cambridge Univ. Pr., Cambridge, U.K. (2004).Google Scholar
  50. [50]
    L. Freidel and A. Starodubtsev, Quantum gravity in terms of topological observables, hep-th/0501191 [INSPIRE].
  51. [51]
    K. Krasnov, A gauge theoretic approach to gravity, Proc. Roy. Soc. Lond. A 468 (2012) 2129 [arXiv:1202.6183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb (L2C)Université de MontpellierMontpellierFrance
  2. 2.Centre de Physique ThéoriqueMarseilleFrance

Personalised recommendations