Advertisement

Generalizing the entanglement entropy of singular regions in conformal field theories

  • Pablo BuenoEmail author
  • Horacio Casini
  • William Witczak-Krempa
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution \( {S}_n^{\mathrm{univ}}=-\frac{1}{8\pi }{f}_b(n){\int}_{\gamma }{k}^2{\log}^2\left(R/\delta \right) \), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.

Keywords

Conformal Field Theory AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys. 90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Grover, A.M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  6. [6]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D.V. Fursaev, Entanglement Rényi entropies in conformal field theories and holography, JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    B.R. Safdi, Exact and numerical results on entanglement entropy in (5 + 1)-dimensional CFT, JHEP 12 (2012) 005 [arXiv:1206.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.-X. Miao, Universal terms of entanglement entropy for 6d CFTs, JHEP 10 (2015) 049 [arXiv:1503.05538] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Casini, Mutual information challenges entropy bounds, Class. Quant. Grav. 24 (2007) 1293 [gr-qc/0609126] [INSPIRE].
  12. [12]
    H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE].
  15. [15]
    H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2 + 1 dimensions, Nucl. Phys. B 764 (2007) 183 [hep-th/0606256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Casini, M. Huerta and L. Leitao, Entanglement entropy for a Dirac fermion in three dimensions: vertex contribution, Nucl. Phys. B 814 (2009) 594 [arXiv:0811.1968] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  18. [18]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist operators, JHEP 09 (2015) 091 [arXiv:1507.06997] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J.S. Dowker, Note on Rényi vertex contributions and twist operator weights for free scalar fields, arXiv:1509.00782 [INSPIRE].
  20. [20]
    J.S. Dowker, Conformal weights of charged Rényi entropy twist operators for free Dirac fields in arbitrary dimensions, arXiv:1510.08378 [INSPIRE].
  21. [21]
    H. Elvang and M. Hadjiantonis, Exact results for corner contributions to the entanglement entropy and Rényi entropies of free bosons and fermions in 3d, Phys. Lett. B 749 (2015) 383 [arXiv:1506.06729] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    C. Berthiere, Boundary-corner entanglement for free bosons, Phys. Rev. B 99 (2019) 165113 [arXiv:1811.12875] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Whitsitt, W. Witczak-Krempa and S. Sachdev, Entanglement entropy of the large N Wilson-Fisher conformal field theory, Phys. Rev. B 95 (2017) 045148 [arXiv:1610.06568] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].Google Scholar
  25. [25]
    R.C. Myers and A. Singh, Entanglement entropy for singular surfaces, JHEP 09 (2012) 013 [arXiv:1206.5225] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Fonda, D. Seminara and E. Tonni, On shape dependence of holographic entanglement entropy in AdS 4 /CFT 3, JHEP 12 (2015) 037 [arXiv:1510.03664] [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    R.-X. Miao, A holographic proof of the universality of corner entanglement for CFTs, JHEP 10 (2015) 038 [arXiv:1507.06283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Alishahiha, A.F. Astaneh, P. Fonda and F. Omidi, Entanglement entropy for singular surfaces in hyperscaling violating theories, JHEP 09 (2015) 172 [arXiv:1507.05897] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.-W. Pang, Corner contributions to holographic entanglement entropy in non-conformal backgrounds, JHEP 09 (2015) 133 [arXiv:1506.07979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M.R. Mohammadi Mozaffar, A. Mollabashi and F. Omidi, Holographic mutual information for singular surfaces, JHEP 12 (2015) 082 [arXiv:1511.00244] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    L. Bianchi et al., Shape dependence of holographic Rényi entropy in general dimensions, JHEP 11 (2016) 180 [arXiv:1607.07418] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement entropy in AdS 4 /BCFT 3, JHEP 11 (2017) 076 [arXiv:1708.05080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Pastras, On the holographic entanglement entropy for non-smooth entangling curves in AdS 4, Fortsch. Phys. 66 (2018) 1700090 [arXiv:1710.01948] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic subregion complexity for singular surfaces, Eur. Phys. J. C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Ghasemi and S. Parvizi, Entanglement entropy of singular surfaces under relevant deformations in holography, JHEP 02 (2018) 009 [arXiv:1709.08169] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in AdS 4 /BCFT 3 and the Willmore functional, JHEP 08 (2018) 164 [arXiv:1805.11551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    E. Caceres and M.-L. Xiao, Complexity-action of subregions with corners, JHEP 03 (2019) 062 [arXiv:1809.09356] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. Ghasemi and S. Parvizi, Relevant perturbation of entanglement entropy of singular surfaces, arXiv:1902.05058 [INSPIRE].
  40. [40]
    A.B. Kallin, M.B. Hastings, R.G. Melko and R.R.P. Singh, Anomalies in the entanglement properties of the square-lattice Heisenberg model, Phys. Rev. B 84 (2011) 165134 [arXiv:1107.2840].ADSCrossRefGoogle Scholar
  41. [41]
    A.B. Kallin et al., Corner contribution to the entanglement entropy of an O(3) quantum critical point in 2 + 1 dimensions, J. Stat. Mech. 1406 (2014) P06009 [arXiv:1401.3504] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    J. Helmes and S. Wessel, Correlations and entanglement in quantum critical bilayer and necklace XY models, Phys. Rev. B 92 (2015) 125120 [arXiv:1411.7773] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Laflorencie, D.J. Luitz and F. Alet, Spin-wave approach for entanglement entropies of the J1-J2 Heisenberg antiferromagnet on the square lattice, Phys. Rev. B 92 (2015) 115126 [arXiv:1506.03703] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Helmes et al., Universal corner entanglement of Dirac fermions and gapless bosons from the continuum to the lattice, Phys. Rev. B 94 (2016) 125142 [arXiv:1606.03096] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. De Nobili, A. Coser and E. Tonni, Entanglement negativity in a two dimensional harmonic lattice: area law and corner contributions, J. Stat. Mech. 1608 (2016) 083102 [arXiv:1604.02609] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    P. Bueno and W. Witczak-Krempa, Bounds on corner entanglement in quantum critical states, Phys. Rev. B 93 (2016) 045131 [arXiv:1511.04077] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    W. Witczak-Krempa, L.E. Hayward Sierens and R.G. Melko, Cornering gapless quantum states via their torus entanglement, Phys. Rev. Lett. 118 (2017) 077202 [arXiv:1603.02684] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C.-S. Chu and R.-X. Miao, Universality in the shape dependence of holographic Rényi entropy for general higher derivative gravity, JHEP 12 (2016) 036 [arXiv:1608.00328] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones, JHEP 12 (2015) 168 [arXiv:1508.00587] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    X. Dong, Shape dependence of holographic Rényi entropy in conformal field theories, Phys. Rev. Lett. 116 (2016) 251602 [arXiv:1602.08493] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Balakrishnan, S. Dutta and T. Faulkner, Gravitational dual of the Rényi twist displacement operator, Phys. Rev. D 96 (2017) 046019 [arXiv:1607.06155] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On shape dependence and rg flow of entanglement entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    I.A. Kovacs and F. Igoli, Universal logarithmic terms in the entanglement entropy of 2d, 3d and 4d random transverse-field ising models, Europhys. Lett. 97 (2012) 67009.ADSCrossRefGoogle Scholar
  59. [59]
    T. Devakul and R.R.P. Singh, Entanglement across a cubic interface in 3 + 1 dimensions, Phys. Rev. B 90 (2014) 054415 [arXiv:1407.0084].ADSCrossRefGoogle Scholar
  60. [60]
    L.E.H. Sierens et al., Cubic trihedral corner entanglement for a free scalar, Phys. Rev. B 96 (2017) 035117 [arXiv:1703.03413] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Bednik et al., Probing trihedral corner entanglement for Dirac fermions, Phys. Rev. B 99 (2019) 155153 [arXiv:1810.02831] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    W. Witczak-Krempa, Entanglement susceptibilities and universal geometric entanglement entropy, Phys. Rev. B 99 (2019) 075138 [arXiv:1810.07209] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M.P. Hertzberg and F. Wilczek, Some calculable contributions to entanglement entropy, Phys. Rev. Lett. 106 (2011) 050404 [arXiv:1007.0993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    H. Casini, F.D. Mazzitelli and E. Testé, Area terms in entanglement entropy, Phys. Rev. D 91 (2015) 104035 [arXiv:1412.6522] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    M. Huerta, Numerical determination of the entanglement entropy for free fields in the cylinder, Phys. Lett. B 710 (2012) 691 [arXiv:1112.1277] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].
  67. [67]
    H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [INSPIRE].
  69. [69]
    R. Helling, H. Leschke and W. Spitzer, A special case of a conjecture by widom with implications to fermionic entanglement entropy, Int. Math. Res. Not. 2011 (2011) 1451 [arXiv:0906.4946] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  70. [70]
    H. Dorn, On the logarithmic divergent part of entanglement entropy, smooth versus singular regions, Phys. Lett. B 763 (2016) 134 [arXiv:1608.04900] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    H. Dorn, Holographic entanglement entropy for hollow cones and banana shaped regions, JHEP 06 (2016) 052 [arXiv:1602.06756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    H. Dorn, Wilson loops at strong coupling for curved contours with cusps, J. Phys. A 49 (2016) 145402 [arXiv:1509.00222] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    H. Dorn, On a new type of divergence for spiky Wilson loops and related entanglement entropies, JHEP 03 (2018) 124 [Erratum ibid. 05 (2018) 108] [arXiv:1801.10367] [INSPIRE].
  77. [77]
    H. Dorn, On Wilson loops for two touching circles with opposite orientation, J. Phys. A 52 (2019) 095401 [arXiv:1811.00799] [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    H. Dorn, More on Wilson loops for two touching circles, JHEP 07 (2019) 088 [arXiv:1905.01101] [INSPIRE].CrossRefzbMATHGoogle Scholar
  79. [79]
    M. Guo and R.C. Myers, private communication.Google Scholar
  80. [80]
    A.F. Astaneh, G. Gibbons and S.N. Solodukhin, What surface maximizes entanglement entropy?, Phys. Rev. D 90 (2014) 085021 [arXiv:1407.4719] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Rényi entropy, JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Pablo Bueno
    • 1
    Email author
  • Horacio Casini
    • 1
  • William Witczak-Krempa
    • 2
    • 3
  1. 1.Instituto Balseiro, Centro Atómico BarilocheS.C. de BarilocheArgentina
  2. 2.Departement de physiqueUniversité de MontréalMontréalCanada
  3. 3.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations