Advertisement

Sensitivity of the intensity frontier experiments for neutrino and scalar portals: analytic estimates

  • Kyrylo Bondarenko
  • Alexey Boyarsky
  • Maksym OvchynnikovEmail author
  • Oleg Ruchayskiy
Open Access
Regular Article - Experimental Physics
  • 8 Downloads

Abstract

In recent years, a number of intensity frontier experiments have been proposed to search for feebly interacting particles with masses in the GeV range. We discuss how the characteristic shape of the experimental sensitivity regions — upper and lower boundaries of the probed region, the maximal mass reach — depends on the parameters of the experiments. We use the SHiP and the MATHUSLA experiments as examples. We find a good agreement of our estimates with the results of the Monte Carlo simulations. This simple approach allows to cross-check and debug Monte Carlo results, to scan quickly over the parameter space of feebly interacting particle models, and to explore how sensitivity depends on the geometry of experiments.

Keywords

Beyond Standard Model Fixed target experiments Electroweak interaction Higgs physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Beacham et al., Physics beyond colliders at CERN: beyond the Standard Model working group report, arXiv:1901.09966 [INSPIRE].
  2. [2]
    Belle collaboration, Search for a low mass particle decaying into μ + μ in B 0 → K 0 X and B 0 → ρ 0 X at Belle, Phys. Rev. Lett. 105 (2010) 091801 [arXiv:1005.1450] [INSPIRE].
  3. [3]
    BaBar collaboration, Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett. 108 (2012) 211801 [arXiv:1202.1313] [INSPIRE].
  4. [4]
    LBNE collaboration, The Long-Baseline Neutrino Experiment: exploring fundamental symmetries of the universe, in Snowmass 2013: Workshop on Energy Frontier, Seattle, WA, U.S.A., 30 June-3 July 2013 [arXiv:1307.7335] [INSPIRE].
  5. [5]
    BaBar collaboration, Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  6. [6]
    LHCb collaboration, Search for Majorana neutrinos in B → π + μ μ decays, Phys. Rev. Lett. 112 (2014) 131802 [arXiv:1401.5361] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  8. [8]
    CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ± + jets events in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].
  9. [9]
    Belle collaboration, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114 (2015) 211801 [arXiv:1502.00084] [INSPIRE].
  10. [10]
    NA64 collaboration, Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].
  11. [11]
    BaBar collaboration, Search for invisible decays of a dark photon produced in e + e collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  12. [12]
    SHiP collaboration, Prospects of the SHiP and NA62 experiments at CERN for hidden sector searches, PoS(NuFact2017) 139 (2017) [arXiv:1712.01768] [INSPIRE].
  13. [13]
    A. Izmaylov and S. Suvorov, Search for heavy neutrinos in the ND280 near detector of the T2K experiment, Phys. Part. Nucl. 48 (2017) 984 [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  15. [15]
    NA62 collaboration, Searches for very weakly-coupled particles beyond the Standard Model with NA62, in Proceedings, 13th Patras Workshop on Axions, WIMPs and WISPs, (PATRAS 2017), Thessaloniki, Greece, 15-19 May 2017, DESY-PROC-2017-02, (2018), pg. 145 [arXiv:1711.08967] [INSPIRE].
  16. [16]
    CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].
  17. [17]
    V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for long-lived particles: a compact detector for exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.P. Chou, D. Curtin and H.J. Lubatti, New detectors to explore the lifetime frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case, arXiv:1806.07396 [INSPIRE].
  20. [20]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].ADSGoogle Scholar
  21. [21]
    FASER collaboration, FASER: ForwArd Search ExpeRiment at the LHC, arXiv:1901.04468 [INSPIRE].
  22. [22]
    V.V. Gligorov, S. Knapen, B. Nachman, M. Papucci and D.J. Robinson, Leveraging the ALICE/L3 cavern for long-lived particle searches, Phys. Rev. D 99 (2019) 015023 [arXiv:1810.03636] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].
  24. [24]
    K. Bondarenko, A. Boyarsky, D. Gorbunov and O. Ruchayskiy, Phenomenology of GeV-scale heavy neutral leptons, JHEP 11 (2018) 032 [arXiv:1805.08567] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Monin, A. Boyarsky and O. Ruchayskiy, Hadronic decays of a light Higgs-like scalar, Phys. Rev. D 99 (2019) 015019 [arXiv:1806.07759] [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Bezrukov, D. Gorbunov and I. Timiryasov, Uncertainties of hadronic scalar decay calculations, arXiv:1812.08088 [INSPIRE].
  27. [27]
    M.W. Winkler, Decay and detection of a light scalar boson mixing with the Higgs boson, Phys. Rev. D 99 (2019) 015018 [arXiv:1809.01876] [INSPIRE].ADSGoogle Scholar
  28. [28]
    I. Boiarska, K. Bondarenko, A. Boyarsky, V. Gorkavenko, M. Ovchynnikov and A. Sokolenko, Phenomenology of GeV-scale scalar portal, arXiv:1904.10447 [INSPIRE].
  29. [29]
    G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C.O. Dib, C.S. Kim and S. Tapia Araya, Search for light sterile neutrinos from W ± decays at the LHC, arXiv:1903.04905 [INSPIRE].
  31. [31]
    SHiP collaboration, Sensitivity of the SHiP experiment to heavy neutral leptons, JHEP 04 (2019) 077 [arXiv:1811.00930] [INSPIRE].
  32. [32]
    D. Curtin and M.E. Peskin, Analysis of long lived particle decays with the MATHUSLA detector, Phys. Rev. D 97 (2018) 015006 [arXiv:1705.06327] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.A. Evans, Detecting hidden particles with MATHUSLA, Phys. Rev. D 97 (2018) 055046 [arXiv:1708.08503] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.C. Helo, M. Hirsch and Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC, JHEP 07 (2018) 056 [arXiv:1803.02212] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
  36. [36]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].
  37. [37]
    SHiP collaboration, The experimental facility for the Search for Hidden Particles at the CERN SPS, 2019 JINST 14 P03025 [arXiv:1810.06880] [INSPIRE].
  38. [38]
    P. Minkowski, μ → eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  40. [40]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].Google Scholar
  41. [41]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  42. [42]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  44. [44]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  46. [46]
    T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].
  47. [47]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  48. [48]
    R.M. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
  49. [49]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  50. [50]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  51. [51]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the Standard Model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].
  52. [52]
    M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, JHEP 07 (2018) 105 [arXiv:1801.04207] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS: addendum to technical proposal, CERN-SPSC-2015-040, CERN, Geneva, Switzerland (2015) [SPSC-P-350-ADD-2] [INSPIRE].
  54. [54]
    SHiP collaboration, Optimising the active muon shield for the SHiP experiment at CERN, J. Phys. Conf. Ser. 934 (2017) 012050 [INSPIRE].
  55. [55]
    SHiP collaboration, The active muon shield in the SHiP experiment, 2017 JINST 12 P05011 [arXiv:1703.03612] [INSPIRE].
  56. [56]
    I. Boiarska et al., Scalars from Higgs bosons at FASER2, to appear, (2019).Google Scholar
  57. [57]
    LHCb collaboration, Observation of \( {B}_c^{+} \) → D 0 K + decays, Phys. Rev. Lett. 118 (2017) 111803 [arXiv:1701.01856] [INSPIRE].
  58. [58]
    CDF collaboration, Observation of the B c meson in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev. Lett. 81 (1998) 2432 [hep-ex/9805034] [INSPIRE].
  59. [59]
    CDF collaboration, Observation of B c mesons in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev. D 58 (1998) 112004 [hep-ex/9804014] [INSPIRE].
  60. [60]
    K.-M. Cheung, B c meson production at the Tevatron revisited, Phys. Lett. B 472 (2000) 408 [hep-ph/9908405] [INSPIRE].
  61. [61]
    A.V. Berezhnoy, Color flows for the process gg → B c + c + \( \overline{b} \), Phys. Atom. Nucl. 68 (2005) 1866 [Yad. Fiz. 68 (2005) 1928] [hep-ph/0407315] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K. Kolodziej and R. Ruckl, On the energy dependence of hadronic B c production, Nucl. Instrum. Meth. A 408 (1998) 33 [hep-ph/9803327] [INSPIRE].
  63. [63]
    K. Kolodziej, A. Leike and R. Ruckl, Production of B c mesons in hadronic collisions, Phys. Lett. B 355 (1995) 337 [hep-ph/9505298] [INSPIRE].
  64. [64]
    SHiP collaboration, Heavy flavour cascade production in a beam dump, CERN-SHiP-NOTE-2015-009, CERN, Geneva, Switzerland (2015).
  65. [65]
    CMS collaboration, Measurement of the total and differential inclusive B + hadron cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 771 (2017) 435 [arXiv:1609.00873] [INSPIRE].
  66. [66]
    ATLAS collaboration, Measurement of D ∗± , D ± and D s meson production cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Nucl. Phys. B 907 (2016) 717 [arXiv:1512.02913] [INSPIRE].
  67. [67]
    LHCb collaboration, Measurement of B meson production cross-sections in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 08 (2013) 117 [arXiv:1306.3663] [INSPIRE].
  68. [68]
    CMS collaboration, Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 105 (2010) 022002 [arXiv:1005.3299] [INSPIRE].
  69. [69]
    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].
  71. [71]
    M. Cacciari, S. Frixione and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].
  72. [72]
    M. Cacciari, M.L. Mangano and P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at \( \sqrt{s} \) = 7 and 13 TeV, Eur. Phys. J. C 75 (2015) 610 [arXiv:1507.06197] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    ATLAS collaboration, Search for scalar charm quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. Lett. 114(2015) 161801 [arXiv:1501.01325] [INSPIRE].
  74. [74]
    LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2016) 159 [Erratum ibid. 09 (2016) 013] [arXiv:1510.01707] [INSPIRE].
  75. [75]
    LHCb collaboration, Search for rare \( {B}_{(s)}^0 \) → μ + μ μ + μ decays, Phys. Rev. Lett. 110 (2013) 211801 [arXiv:1303.1092] [INSPIRE].
  76. [76]
    C.-H. Chang, C. Driouichi, P. Eerola and X.G. Wu, BCVEGPY: an event generator for hadronic production of the B c meson, Comput. Phys. Commun. 159 (2004) 192 [hep-ph/0309120] [INSPIRE].
  77. [77]
    ATLAS collaboration, Measurement of W ± and Z-boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
  78. [78]
    ATLAS collaboration, Measurement of the transverse momentum distribution of W bosons in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012005 [arXiv:1108.6308] [INSPIRE].
  79. [79]
    CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 02 (2017) 096 [arXiv:1606.05864] [INSPIRE].
  80. [80]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    SHiP collaboration, HNL sensitivity of SHiP experiment, Zenodo, (2018).Google Scholar
  82. [82]
    SHiP collaboration, Sensitivity of the SHiP experiment to dark scalars of GeV mass, to appear, (2019).Google Scholar
  83. [83]
    B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV ≤ m h ≤ 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123 [arXiv:1310.8042] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Constraints on light mediators: confronting dark matter searches with B physics, Phys. Lett. B 727 (2013) 506 [arXiv:1310.6752] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    LHCb collaboration, Measurement of b-hadron production fractions in 7 TeV pp collisions, Phys. Rev. D 85 (2012) 032008 [arXiv:1111.2357] [INSPIRE].
  87. [87]
    F. Kling and S. Trojanowski, Heavy neutral leptons at FASER, Phys. Rev. D 97 (2018) 095016 [arXiv:1801.08947] [INSPIRE].ADSGoogle Scholar
  88. [88]
    SHiP collaboration, Mass dependence of branching ratios into HNL for FairShip, CERN-SHiP-NOTE-2016-001, CERN, Geneva, Switzerland (2016).
  89. [89]
    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [Erratum ibid. 11 (2013) 101] [arXiv:0705.1729] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    ATLAS collaboration, Measurement of Υ production in 7 TeV pp collisions at ATLAS, Phys. Rev. D 87 (2013) 052004 [arXiv:1211.7255] [INSPIRE].ADSGoogle Scholar
  92. [92]
    CMS collaboration, Measurement of the Υ(1S), Υ(2S) and Υ(3S) cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 727 (2013) 101 [arXiv:1303.5900] [INSPIRE].
  93. [93]
    Z. Hu, N.T. Leonardo, T. Liu and M. Haytmyradov, Review of bottomonium measurements from CMS, Int. J. Mod. Phys. A 32 (2017) 1730015 [arXiv:1708.02913] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  95. [95]
    H.-Y. Cheng, C.-K. Chua, K.-C. Yang and Z.-Q. Zhang, Revisiting charmless hadronic B decays to scalar mesons, Phys. Rev. D 87 (2013) 114001 [arXiv:1303.4403] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].
  97. [97]
    J.C. Helo, S. Kovalenko and I. Schmidt, Sterile neutrinos in lepton number and lepton flavor violating decays, Nucl. Phys. B 853 (2011) 80 [arXiv:1005.1607] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Kyrylo Bondarenko
    • 1
  • Alexey Boyarsky
    • 1
  • Maksym Ovchynnikov
    • 1
    Email author
  • Oleg Ruchayskiy
    • 2
  1. 1.Intituut-Lorentz, Leiden UniversityLeidenThe Netherlands
  2. 2.Discovery Center, Niels Bohr InstituteCopenhagen UniversityCopenhagenDenmark

Personalised recommendations