Advertisement

Non-Lorentzian M5-brane theories from holography

  • N. Lambert
  • A. Lipstein
  • P. RichmondEmail author
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

M-theory on AdS7 × S4 admits a description where the AdS7 factor is constructed as a timelike Hopf fibration over a non-compact three dimensional complex projective space \( {\tilde{\mathrm{\mathbb{CP}}}}^3 \) [1]. We consider the worldvolume theory for M5-branes at a fixed \( {\tilde{\mathrm{\mathbb{CP}}}}^3 \) radius which, after reduction along the timelike fibre, is given by an Ω-deformed Yang-Mills theory with eight supercharges. Taking the radius to infinity then induces a classical RG flow. We construct the fixed point action which has an enhanced 24 supercharges and which can be understood as the (2, 0) theory of M5-branes on flat space reduced along a compact null Killing direction.

Keywords

Extended Supersymmetry M-Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.N. Pope, A. Sadrzadeh and S.R. Scuro, Timelike Hopf duality and type IIA* string solutions, Class. Quant. Grav. 17 (2000) 623 [hep-th/9905161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  3. [3]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].
  5. [5]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M 5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].
  6. [6]
    C.M. Hull and N. Lambert, Emergent time and the M 5-brane, JHEP 06 (2014) 016 [arXiv:1403.4532] [INSPIRE].
  7. [7]
    N. Lambert and P. Richmond, (2, 0) supersymmetry and the light-cone description of M 5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].
  8. [8]
    H.C. Kim et al., On instantons as Kaluza-Klein modes of M 5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Kallen, J.A. Minahan, A. Nedelin and M. Zabzine, N 3 -behavior from 5D Yang-Mills theory, JHEP 10 (2012) 184 [arXiv:1207.3763] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M 5-branes, arXiv:1211.0144 [INSPIRE].
  11. [11]
    J.A. Minahan, A. Nedelin and M. Zabzine, 5D super Yang-Mills theory and the correspondence to AdS 7/CFT 6, J. Phys. A 46 (2013) 355401 [arXiv:1304.1016] [INSPIRE].
  12. [12]
    H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M 5-brane superconformal index, arXiv:1307.7660 [INSPIRE].
  13. [13]
    Z. Bern et al., D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops, Phys. Rev. D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Papageorgakis and A.B. Royston, Revisiting soliton contributions to perturbative amplitudes, JHEP 09 (2014) 128 [arXiv:1404.0016] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H.-C. Kim and K. Lee, Supersymmetric M 5 brane theories on R × CP 2, JHEP 07 (2013) 072 [arXiv:1210.0853] [INSPIRE].
  16. [16]
    N. Lambert and R. Mouland, Non-Lorentzian RG flows and supersymmetry, JHEP 06 (2019) 130 [arXiv:1904.05071] [INSPIRE].
  17. [17]
    O. Aharony et al., Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].
  18. [18]
    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Kim, S. Mukhi and A. Tomasiello, Timelike Hopf reduction and weakly coupled M 5-branes, unpublished.Google Scholar
  21. [21]
    J. Gutowski and G. Papadopoulos, AdS calibrations, Phys. Lett. B 462 (1999) 81 [hep-th/9902034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Linander and F. Ohlsson, (2, 0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].
  24. [24]
    J.H. Schwarz, Highly effective actions, JHEP (2014) 088 [arXiv:1311.0305] [INSPIRE].
  25. [25]
    N. Lambert and M. Owen, Non-Lorentzian field theories with maximal supersymmetry and moduli space dynamics, JHEP 10 (2018) 133 [arXiv:1808.02948] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C.M. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonStrandU.K.
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations