# SO(8) supergravity and the magic of machine learning

## Abstract

Using de Wit-Nicolai *D* = 4 \( \mathcal{N} \) = 8 SO(8) supergravity as an example, we show how modern Machine Learning software libraries such as Google’s TensorFlow can be employed to greatly simplify the analysis of high-dimensional scalar sectors of some M-Theory compactifications. We provide detailed information on the location, symmetries, and particle spectra and charges of 192 critical points on the scalar manifold of SO(8) supergravity, including one newly discovered \( \mathcal{N} \) = 1 vacuum with SO(3) residual symmetry, one new potentially stabilizable non-supersymmetric solution, and examples for “Galois conjugate pairs” of solutions, i.e. solution-pairs that share the same gauge group embedding into SO(8) and minimal polynomials for the cosmological constant. Where feasible, we give analytic expressions for solution coordinates and cosmological constants.

As the authors’ aspiration is to present the discussion in a form that is accessible to both the Machine Learning and String Theory communities and allows adopting our methods towards the study of other models, we provide an introductory overview over the relevant Physics as well as Machine Learning concepts. This includes short pedagogical code examples. In particular, we show how to formulate a requirement for residual Supersymmetry as a Machine Learning loss function and effectively guide the numerical search towards supersymmetric critical points. Numerical investigations suggest that there are no further supersymmetric vacua beyond this newly discovered fifth solution.

## Keywords

Supergravity Models Supersymmetry Breaking AdS-CFT Correspondence M-Theory## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

## References

- [1]S.W. Hawking,
*Is the end in sight for theoretical physics?*,*Phys. Bull.***32**(1981) 15.CrossRefGoogle Scholar - [2]M. Abadi et al.,
*TensorFlow: a system for large-scale machine learning, talk given at the**12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16**)*, November 2-4, Savannah, U.S.A. (2016). - [3]B. de Wit and H. Nicolai,
*N*= 8*supergravity with Local*SO(8) × SU(8)*invariance, Phys. Lett. B***108**(1982) 285 [INSPIRE]. - [4]B. de Wit and H. Nicolai,
*Local*SO(8) × SU(8)*invariance in*\( \mathcal{N} \) = 8*supergravity and its implication for superunification*, technical report CM-P00062104 (1981).Google Scholar - [5]M. Günaydin, L.J. Romans and N.P. Warner,
*Gauged N*= 8*supergravity in five-dimensions*,*Phys. Lett.***154B**(1985) 268 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [6]
- [7]
- [8]M.J. Duff,
*The theory formerly known as strings*,*Sci. Amer.***278**(1998) 64 [math/9608117].CrossRefGoogle Scholar - [9]E. Witten,
*String theory dynamics in various dimensions, Nucl. Phys.***B 443**(1995) 85 [hep-th/9503124] [INSPIRE]. - [10]J. Wess and B. Zumino,
*Supergauge transformations in four-dimensions*,*Nucl. Phys.***B 70**(1974) 39 [INSPIRE]. - [11]D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara,
*Progress toward a theory of supergravity*,*Phys. Rev.***D 13**(1976) 3214 [INSPIRE].ADSMathSciNetGoogle Scholar - [12]S. Deser and B. Zumino,
*Consistent supergravity*,*Phys. Lett.***B 62**(1976) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [13]Z. Bern et al.,
*Ultraviolet behavior of*\( \mathcal{N} \)*= 8 supergravity at four loops*,*Phys. Rev. Lett.***103**(2009) 81301.ADSCrossRefGoogle Scholar - [14]Z. Bern,
*Ultraviolet surprises in gravity, talk given at Bay Area Particle Theory Seminar (BAPTS), October***9**, San Francisco, U.S.A (2015).Google Scholar - [15]S. Deser, J.H. Kay and K.S. Stelle,
*Renormalizability properties of supergravity*,*Phys. Rev. Lett.***38**(1977) 527 [arXiv:1506.03757] [INSPIRE].ADSCrossRefGoogle Scholar - [16]E. Witten,
*What every physicist should know about string theory, in Foundations of mathematics and physics one century after Hilbert*, J. Kouneiher ed., Springer, Germany (2018).Google Scholar - [17]S. Weinberg,
*The quantum theory of fields*.*Vol. 3*:*supersymmetry*, Cambridge University Press, Cambridge U.K. (2013).zbMATHGoogle Scholar - [18]
- [19]G. Bertone, D. Hooper and J. Silk,
*Particle dark matter: evidence, candidates and constraints*,*Phys. Rept.***405**(2005) 279.ADSCrossRefGoogle Scholar - [20]R. D. Peccei,
*The strong CP problem and axions*, in Axions, M. Kuster et al. eds., Springer, Germany (2008).CrossRefGoogle Scholar - [21]S.M. Carroll,
*The cosmological constant*,*Liv. Rev. Rel.***4**(2001) 1.MathSciNetCrossRefzbMATHGoogle Scholar - [22]
- [23]S.L. Adler,
*Axial-vector vertex in spinor electrodynamics*,*Phys. Rev.***177**(1969) 2426.ADSCrossRefGoogle Scholar - [24]
- [25]H. Georgi and S.L. Glashow,
*Unity of all elementary particle forces*,*Phys. Rev. Lett.***32**(1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar - [26]J.C. Pati and A. Salam,
*Lepton number as the fourth “color*”,*Phys. Rev.***10**(1974) 275.Google Scholar - [27]F. Englert,
*Nobel lecture: the BEH mechanism and its scalar boson*,*Rev. Mod. Phys.***86**(2014) 843.ADSCrossRefzbMATHGoogle Scholar - [28]P.W. Higgs,
*Nobel lecture: evading the Goldstone theorem*,*Rev. Mod. Phys.***86**(2014) 851.ADSCrossRefGoogle Scholar - [29]H. Nicolai and N.P. Warner,
*The*SU(3) × U(1)*invariant breaking of gauged N = 8 supergravity*,*Nucl. Phys.***B 259**(1985) 412 [INSPIRE].ADSCrossRefGoogle Scholar - [30]K. A. Meissner and H. Nicolai,
*Standard model fermions and*\( \mathcal{N} \)*=*8*supergravity*,*Phys. Rev.***D 91**(2015) 65029.ADSGoogle Scholar - [31]A. Kleinschmidt and H. Nicolai,
*Standard model fermions and K(E*_{10}),*Phys. Lett.***B 747**(2015) 251 [arXiv:1504.01586] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [32]N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner,
*Holographic*,*N =*1*supersymmetric RG flows on M*2*branes, JHEP*09 (2009) 043 [arXiv:0901.2736] [INSPIRE]. - [33]T. Kaluza,
*On the unification problem in physics*,*Int. J. Mod. Phys.***D 27**(2018) 1870001.Google Scholar - [34]O. Klein,
*Quantentheorie und fünfdimensionale Relativitätstheorie*,*Z. Phys.***37**(1926) 895.ADSCrossRefzbMATHGoogle Scholar - [35]E. Cremmer, B. Julia and J. Scherk,
*Supergravity theory in eleven-dimensions*,*Phys. Lett.***B 76**(1978) 409 [INSPIRE].ADSCrossRefGoogle Scholar - [36]E. Cremmer and B. Julia,
*The N*= 8*supergravity theory. 1. The lagrangian*,*Phys. Lett.***B 80**(1978) 48 [INSPIRE].ADSCrossRefGoogle Scholar - [37]E. Cremmer and B. Julia,
*The*SO(8)*supergravity*,*Nucl. Phys.***B 159**(1979) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [38]G. Parisi and N. Sourlas,
*Supersymmetric field theories and stochastic differential equations*,*Nucl. Phys.***B 206**(1982) 321.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [39]S. Ferrara, J. Scherk and B. Zumino,
*Algebraic properties of extended supergravity theories*,*Nucl. Phys. B***121**(1977) 393 [INSPIRE].ADSCrossRefGoogle Scholar - [40]E.S. Fradkin and M.A. Vasiliev,
*Minimal set of auxiliary fields in*SO(2)*extended supergravity*,*Phys. Lett.***85B**(1979) 47 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [41]P. Fayet,
*Fermi-Bose hypersymmetry*,*Nucl. Phys. B***113**(1976) 135 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [42]
- [43]E. Kopczynski, D. Celinska and M. Čtrnáct,
*HyperRogue: playing with Hyperbolic Geometry, in the proceedings of the Bridges Conference*, July 27-31, Ontario, Canada (2017).Google Scholar - [44]J. Milnor,
*On manifolds homeomorphic to the 7-sphere*,*Ann. Math.***64**(1956) 399.MathSciNetCrossRefzbMATHGoogle Scholar - [45]E.V. Brieskorn,
*Examples of singular normal complex spaces which are topological manifolds*,*Proc. Natl. Acad. Sci. U.S.A.***55**(1966) 1395.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [46]
- [47]E. Witten,
*Fermion quantum numbers in Kaluza-Klein theory, in the proceedings of Quantum field theory and the fundamental problems of physics*, June 1-3, Shelter Island, U.S.A. (1983).Google Scholar - [48]J. Maldacena,
*The large N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113.MathSciNetCrossRefzbMATHGoogle Scholar - [49]S.S. Gubser, I.R. Klebanov and A.M. Polyakov,
*Gauge theory correlators from noncritical string theory*,*Phys. Lett.***B 428**(1998) 105 [hep-th/9802109] [INSPIRE]. - [50]E. Witten,
*Anti de Sitter space and holography*,*Adv. Theor. Math. Phys.***2**(1998) 253.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [51]P. Kovtun, D.T. Son and A.O. Starinets,
*Viscosity in strongly interacting quantum field theories from black hole physics*,*Phys. Rev. Lett.***94**(2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar - [52]S.S. Gubser,
*Breaking an Abelian gauge symmetry near a black hole horizon*,*Phys. Rev.***D 78**(2008) 065034.ADSGoogle Scholar - [53]S.A. Hartnoll, C.P. Herzog and G.T. Horowitz,
*Holographic superconductors*,*JHEP***12**(2008) 015.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [54]S.A. Hartnoll, C.P. Herzog and G.T. Horowitz,
*Building a Holographic Superconductor*,*Phys. Rev. Lett.***101**(2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [55]J. Ehlers,
*Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen*, Ph.D. thesis, Hamburg University, Hamburg, Germany (1957).Google Scholar - [56]R. Geroch,
*A method for generating solutions of Einstein’s equations*,*J. Math. Phys.***12**(1971) 918.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [57]J. Berkeley and D.S. Berman,
*The Navier-Stokes equation and solution generating symmetries from holography*,*JHEP***04**(2013) 092 [arXiv:1211.1983] [INSPIRE].ADSCrossRefGoogle Scholar - [58]S. Bhattacharyya, S. Minwalla, V. E. Hubeny and M. Rangamani,
*Nonlinear fluid dynamics from gravity*,*JHEP***02**(2008) 045.ADSCrossRefGoogle Scholar - [59]O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6
*superconformal Chern-Simons-matter theories, M*2*-branes and their gravity duals*,*JHEP***10**(2008) 091.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [60]N. Bobev, V.S. Min and K. Pilch,
*Mass-deformed ABJM and black holes in AdS*_{4},*JHEP***03**(2018) 050 [arXiv:1801.03135] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [61]A.M. Turing, Computing machinery and intelligence,
*Mind***49**(1950) 433.MathSciNetCrossRefGoogle Scholar - [62]A.L. Samuel,
*Some studies in machine learning using the game of checkers*,*IBM J. Res. Dev.***3**(1959) 210.MathSciNetCrossRefGoogle Scholar - [63]
- [64]
- [65]A. Krizhevsky, I. Sutskever and G.E. Hinton,
*ImageNet classification with deep convolutional neural networks, in**Advances in neural information processing systems 25*, F. Pereira et al. eds., Curran Associates Inc., U.S.A. (2012). - [66]C. Szegedy et al.,
*Going deeper with convolutions, in the proceedings of the*28^{th}*IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 7-12, Boston, U.S.A. (2014) [arXiv:1409.4842]. - [67]P. Sharma, N. Ding, S. Goodman and R. Soricut,
*Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning, in the proceedings of the*56^{th}*Annual Meeting of the Association for Computational Linguistics*, July 15-20, Melbourne, Australia (2018). - [68]A. Vaswani et al.,
*Attention is all you need*, in*Advances in neural information processing**systems 30*, I. Guyon et al. eds., Curran Associates Inc., U.S.A. (2017). - [69]D. Silver et al.,
*Mastering the game of Go with deep neural networks and tree search*,*Nature***529**(2016) 484.ADSCrossRefGoogle Scholar - [70]O. Vinyals et al.,
*AlphaStar: mastering the real-time strategy game StarCraft II*, https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii (2019). - [71]T. Karras, S. Laine and T. Aila,
*A style-based generator architecture for generative adversarial networks*, arXiv:1812.04948. - [72]F. Rosenblatt,
*The perceptron: a probabilistic model for information storage and organization in the brain*,*Psychol. Rev.***65**(1958) 386.CrossRefGoogle Scholar - [73]D.E. Rumelhart et al.,
*A general framework for parallel distributed processing*, in*Parallel distributed processing: Explorations in the microstructure of cognition*, D.E. Rumelhart and J.L. McClelland eds., MIT Press, U.S.A. (1986).Google Scholar - [74]S. Hochreiter and J. Schmidhuber,
*Long short-term memory*,*Neural Comput.***9**(1997) 1735.CrossRefGoogle Scholar - [75]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner,
*Gradient-based learning applied to document recognition*,*Proc. IEEE***86**(1998) 2278.CrossRefGoogle Scholar - [76]E.J. Hartman, J.D. Keeler and J.M. Kowalski,
*Layered neural networks with gaussian hidden units as universal approximations*,*Neural Comput.***2**(1990) 210.CrossRefGoogle Scholar - [77]G.E. Hinton, S. Osindero and Y.-W. Teh,
*A fast learning algorithm for deep belief nets*,*Neural Comput.***18**(2006) 1527 [arXiv:1111.6189].MathSciNetCrossRefzbMATHGoogle Scholar - [78]
- [79]X. Glorot, A. Bordes and Y. Bengio,
*Deep sparse rectifier neural networks, in the proceedings of the**14th International Conference on Artificial Intelligence and Statistics*, April 11-13, Ft. Lauderdale, U.S.A. (2011). - [80]T. Kohonen,
*Self-organized formation of topologically correct feature maps*,*Biol. Cybernet.***43**(1982) 59.CrossRefzbMATHGoogle Scholar - [81]P. Covington, J. Adams and E. Sargin,
*Deep neural networks for YouTube recommendations, in the proceedings of the*10^{th}*ACM Conference on Recommender Systems (RecSys’16)*, September 15-19, Boston, U.S.A. (2016).Google Scholar - [82]V. Mnih et al.,
*Human-level control through deep reinforcement learning*,*Nature***518**(2015) 529.ADSCrossRefGoogle Scholar - [83]R. Dunne and N. Campbell,
*On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function*, in*the proceedings of the*8^{th}*Australian Conference on Neural Networks (ACNN97)*, Australia (1997).Google Scholar - [84]B. Speelpenning, C
*ompiling fast partial derivatives of functions given by algorithms*, Ph.D. thesis, University of Illinois Urbana-Champaign, Champaign, U.S.A. (1980).Google Scholar - [85]D.E. Rumelhart, G.E. Hinton and R.J. Williams,
*Learning internal representations by error propagation*, technical report, US Dept of the Navy, Cambridge, U.S.A. (1985).CrossRefGoogle Scholar - [86]R. Bellman,
*Dynamic programming and a new formalism in the calculus of variations*,*Proc. Natl. Acad. Sci.***40**(1954) 231.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [87]
*R6RS-AD*, https://github.com/qobi/R6RS-AD. - [88]R. Kondor et al., Covariant compositional networks for learning graphs, [arXiv:1801.02144].
- [89]I. Bars,
*Supersymmetry, p-brane duality and hidden space-time dimensions*,*Phys. Rev.***D 54**(1996) 5203 [hep-th/9604139] [INSPIRE]. - [90]E. Bergshoeff, E. Sezgin and P.K. Townsend,
*Supermembranes and Eleven-Dimensional Supergravity*,*Phys. Lett.***B 189**(1987) 75 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [91]E. Cremmer, B. Julia and J. Scherk,
*Supergravity theory in*11*dimensions*, in*Supergravities in Diverse Dimensions*, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).Google Scholar - [92]M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity,
*Phys. Rept.***130**(1986) 1 [INSPIRE]. - [93]P.G.O. Freund and M.A. Rubin,
*Dynamics of dimensional reduction*,*Phys. Lett.***B 97**(1980) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [94]E. Cremmer, B. Julia, H. Lü and C.N. Pope,
*Dualization of dualities. 1., Nucl. Phys.***B 523**(1998) 73 [hep-th/9710119] [INSPIRE]. - [95]E. Cremmer, B. Julia, H. Lü and C.N. Pope,
*Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities*,*Nucl. Phys.***B 535**(1998) 242 [hep-th/9806106] [INSPIRE]. - [96]M.J. Duff,
*Ultraviolet divergences in extended supergravity*, talk given at the*First School on Supergravity,*April 22-May 6, Trieste, Italy (1981), arXiv:1201.0386 [INSPIRE]. - [97]B. Biran, F. Englert, B. de Wit and H. Nicolai,
*Gauged N =*8*supergravity and its breaking from spontaneous compactification*,*Phys. Lett.***B 124**(1983) 45.Google Scholar - [98]M.J. Duff and C.N. Pope,
*Kaluza-Klein supergravity and the seven sphere, in the proceedings of the September School on Supergravity and Supersymmetry*, September 6-18, Trieste, Italy (1982).Google Scholar - [99]B. de Wit and H. Nicolai,
*The consistency of the S*^{7}*truncation in D*= 11*supergravity*,*Nucl. Phys.***B 281**(1987) 211 [INSPIRE]. - [100]H. Nicolai and K. Pilch,
*Consistent truncation of d*= 11*supergravity on AdS*_{4}×*S*^{7},*JHEP***03**(2012) 099 [arXiv:1112.6131] [INSPIRE]. - [101]M.J. Duff, B.E.W. Nilsson and C.N. Pope,
*Compactification of d*= 11*Supergravity on K*(3)*×*U(3),*Phys. Lett. B***129**(1983) 39 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [102]B. de Wit, H. Samtleben and M. Trigiante,
*The maximal*\( \mathcal{D} \)*=*4*supergravities, JHEP*06 (2007) 049.Google Scholar - [103]C.M. Hull and N.P. Warner,
*The structure of the gauged N =*8*supergravity theories*,*Nucl. Phys.***B 253**(1985) 650 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [104]C.M. Hull,
*Non-compact gaugings of*\( \mathcal{N} \) = 8 supergravity, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).Google Scholar - [105]G. Dall’Agata, G. Inverso and M. Trigiante,
*Evidence for a family of*SO(8)*gauged supergravity theories*,*Phys. Rev. Lett.***109**(2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar - [106]B. de Wit, H. Samtleben and M. Trigiante,
*On Lagrangians and gaugings of maximal supergravities*,*Nucl. Phys.***B 655**(2003) 93 [hep-th/0212239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [107]B. de Wit,
*Supergravity, in the proceedings of Unity from duality. Gravity, gauge theory and strings. NATO Advanced Study Institute*,*Euro Summer School*, 76^{th}*session*, July 30-August 31, Les Houches, France (2001), hep-th/0212245 [INSPIRE]. - [108]T. Fischbacher,
*Fourteen new stationary points in the scalar potential of*SO(8)*-gauged N =*8*, D =*4*supergravity*,*JHEP***09**(2010) 068 [arXiv:0912.1636] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [109]G. Y. Rainich,
*Electrodynamics in the general relativity theory*,*Proc. Natl. Acad. Sci.***10**(1924) 124.ADSCrossRefzbMATHGoogle Scholar - [110]N.P. Warner,
*Some properties of the scalar potential in gauged supergravity theories*,*Nucl. Phys.***B 231**(1984) 250 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [111]P. Breitenlohner and D.Z. Freedman,
*Stability in gauged extended supergravity*,*Annals Phys.***144**(1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [112]T. Fischbacher, K. Pilch and N.P. Warner, New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory, arXiv:1010.4910 [INSPIRE].
- [113]H. Godazga,
*An*SO(3)*×*SO(3)*invariant solution of D = 11 supergravity*,*JHEP***01**(2015) 056 [arXiv:1410.5090] [INSPIRE].ADSCrossRefGoogle Scholar - [114]A. Borghese, R. Linares and D. Roest,
*Minimal Stability in Maximal Supergravity*,*JHEP***07**(2012) 034 [arXiv:1112.3939] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [115]T. Fischbacher,
*The many vacua of gauged extended supergravities*,*Gen. Rel. Grav.***41**(2009) 315 [arXiv:0811.1915] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [116]N.P. Warner,
*Some new extrema of the scalar potential of gauged N =*8*supergravity*,*Phys. Lett.***128B**(1983) 169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [117]B. de Wit and H. Nicolai,
*A new*SO(7)*invariant solution of d*= 11*supergravity*,*Phys. Lett.***148B**(1984) 60 [INSPIRE]. - [118]N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner,
*Supergravity instabilities of non-supersymmetric quantum critical points*,*Class. Quant. Grav.***27**(2010) 235013.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [119]B. de Wit and H. Nicolai,
*The parallelizing S*_{7}*torsion in gauged N =*8*supergravity*,*Nucl. Phys.***B 231**(1984) 506 [INSPIRE].ADSCrossRefGoogle Scholar - [120]Google colaboratory, https://colab.sandbox.google.com.
- [121]N.P. Jouppi et al.,
*In-datacenter performance analysis of a tensor processing unit, in the proceedings of the*44^{th}*Annual International Symposium on Computer Architecture (ISCA’17)*, June 24-28, Toronto, Canada (2017), arXiv:1704.04760. - [122]J. Nocedal and S. Wright,
*Numerical optimization*, 2^{nd}edition, Springer Series in Operations Research and Financial Engineering, Springer, Germany (2006).Google Scholar - [123]
- [124]N. Bobev, T. Fischbacher and K. Pilch, A new \( \mathcal{N} \) = 1
*AdS*_{4}*vacuum of maximal supergravity*, work in progress.Google Scholar - [125]T. Fischbacher,
*The encyclopedic reference of critical points for*SO(8)-gauged*N*= 8*supergravity*.*Part 1: cosmological constants in the range −*Λ/*g*^{2}∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE]. - [126]S. Dittmaier,
*Precision standard model physics, talv given*at*LoopFest V,*June 19-21, SLAC, Stanford, U.S.A. (2006).Google Scholar - [127]G.P. Collins, The Large Hadron Collider: the discovery machine, Sci. Amer. (2008) 39.Google Scholar
- [128]F. Johansson et al.,
*mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18)*(2013).Google Scholar - [129]D. Maclaurin,
*Modeling, inference and optimization with composable differentiable procedures*, Ph.D. thesis, Harvard University, Cambridge, U.S.A. (2016).Google Scholar - [130]P.B. Davenport,
*Rotations about nonorthogonal axes*,*AIAA J.***11**(1973) 853.ADSCrossRefzbMATHGoogle Scholar - [131]J. Wittenburg and L. Lilov,
*Decomposition of a finite rotation into three rotations about given axes*,*Mult*.*Syst. Dyn.***9**(2003) 353.MathSciNetCrossRefzbMATHGoogle Scholar - [132]D.H. Bailey and J.M. Borwein,
*PSLQ: an algorithm to discover integer relations*, (2009).Google Scholar - [133]B. de Wit and H. Nicolai,
*Properties of*\( \mathcal{N} \) = 8*supergravity, in the proceedings of the*19^{th}*Winter School and Workshop on Theoretical Physics: Supersymmetry and Supergravity*, February 14-26, Karpacz, Poland (1983).Google Scholar - [134]A. Borghese, A. Guarino and D. Roest,
*Triality, periodicity and stability of*SO(8)*gauged supergravity*,*JHEP***05**(2013) 107 [arXiv:1302.6057] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [135]M.B. Green, J.H. Schwarz and E. Witten,
*Superstring theory*, Cambridge Monographs on Mathematical Physics volume 150, Camrbidge University PRess, Cambridge U.K. (2012).Google Scholar - [136]J.C. Baez,
*The octonions*,*Bull. Amer. Math. Soc.***39**(2001) 145 [math/0105155].MathSciNetCrossRefzbMATHGoogle Scholar - [137]T. Fischbacher,
*Numerical tools to validate stationary points of*SO(8)*-gauged N =*8*D =*4*supergravity*,*Comput. Phys. Commun.***183**(2012) 780 [arXiv:1007.0600] [INSPIRE].ADSCrossRefGoogle Scholar - [138]F. Englert,
*Spontaneous compactification of eleven-dimensional supergravity*,*Phys. Lett.***B 119**(1982) 339 [INSPIRE].