Advertisement

Seeley-DeWitt coefficients in \( \mathcal{N} \) = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to \( \mathcal{N} \) = 2 extremal black hole entropy

  • Sudip Karan
  • Gourav Banerjee
  • Binata PandaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the heat kernel method for one-loop effective action following the Seeley-DeWitt expansion technique of heat kernel with Seeley-DeWitt coefficients. We also review a general approach of computing the Seeley-DeWitt coefficients in terms of background or geometric invariants. We, then consider the Einstein-Maxwell theory em-bedded in minimal \( \mathcal{N} \) = 2 supergravity in four dimensions and compute the first three Seeley-DeWitt coefficients of the kinetic operator of the bosonic and the fermionic fields in an arbitrary background field configuration. We find the applications of these results in the computation of logarithmic corrections to Bekenstein-Hawking entropy of the extremal Kerr-Newman, Kerr and Reissner-Nordström black holes in minimal \( \mathcal{N} \) = 2 Einstein-Maxwell supergravity theory following the quantum entropy function formalism.

Keywords

Black Holes Black Holes in String Theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    I. Mandal and A. Sen, Black hole microstate counting and its macroscopic counterpart, Nucl. Phys. Proc. Suppl.216 (2011) 147 [arXiv:1008.3801] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    M.R. Setare, Logarithmic correction to the Cardy-Verlinde formula in topological Reissner-Nordström de Sitter space, Phys. Lett.B 573 (2003) 173 [hep-th/0308106] [INSPIRE].ADSzbMATHGoogle Scholar
  3. [3]
    S. Banerjee, R.K. Gupta and A. Sen, Logarithmic corrections to extremal black hole entropy from quantum entropy function, JHEP03 (2011) 147 [arXiv:1005.3044] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic corrections to N = 4 and N = 8 black hole entropy: a one loop test of quantum gravity, JHEP11(2011) 143 [arXiv:1106.0080] [INSPIRE].ADSzbMATHGoogle Scholar
  5. [5]
    A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, Gen. Rel. Grav.44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav.44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Chowdhury, R.K. Gupta, S. Lal, M. Shyani and S. Thakur, Logarithmic corrections to twisted indices from the quantum entropy function, JHEP11 (2014) 002 [arXiv:1404.6363] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    R.K. Gupta, S. Lal and S. Thakur, Logarithmic corrections to extremal black hole entropy in N =2, 4 and 8 supergravity, JHEP11(2014) 072 [arXiv:1402.2441] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    S. Bhattacharyya, B. Panda and A. Sen, Heat kernel expansion and extremal Kerr-Newmann black hole entropy in Einstein-Maxwell theory, JHEP08 (2012) 084 [arXiv:1204.4061] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    C. Keeler, F. Larsen and P. Lisbao, Logarithmic corrections to N ≥ 2 black hole entropy, Phys. Rev.D 90 (2014) 043011 [arXiv:1404.1379] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.M. Charles and F. Larsen, Universal corrections to non-extremal black hole entropy in N ≥ 2 supergravity, JHEP06(2015) 200[arXiv:1505.01156] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    F. Larsen and P. Lisbao, Quantum corrections to supergravity on AdS 2× S 2, Phys. Rev.D 91 (2015) 084056 [arXiv:1411.7423] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Castro, V. Godet, F. Larsen and Y. Zeng, Logarithmic corrections to black hole entropy: the non-BPS branch, JHEP05 (2018) 079 [arXiv:1801.01926] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    A. Sen, Entropy function and AdS 2/CFT 1correspondence, JHEP11 (2008) 075 [arXiv:0805.0095] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Sen, Quantum entropy function from AdS 2/CFT 1correspondence, Int. J. Mod. Phys.A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    A. Sen, Arithmetic of quantum entropy function, JHEP08 (2009) 068 [arXiv:0903.1477] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    B.S. DeWitt, Dynamical theory of groups and fields, Gordon and Breach, New York, NY, U.S.A. (1965).Google Scholar
  18. [18]
    B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev.160 (1967) 1113 [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    B.S. DeWitt, Quantum theory of gravity. 2. The manifestly covariant theory, Phys. Rev.162 (1967) 1195 [INSPIRE].ADSzbMATHGoogle Scholar
  20. [20]
    B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev.162 (1967) 1239 [INSPIRE].ADSzbMATHGoogle Scholar
  21. [21]
    R.T. Seeley, Singular integrals and boundary value problems, Amer. J. Math.88 (1966) 781.MathSciNetzbMATHGoogle Scholar
  22. [22]
    R. Seeley, The resolvent of an elliptic boundary problem, Amer. J. Math.91 (1969) 889.MathSciNetzbMATHGoogle Scholar
  23. [23]
    M.J. Duff, Observations on conformal anomalies, Nucl. Phys.B 125 (1977) 334 [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.M. Christensen and M.J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys.B 154 (1979) 301 [INSPIRE].ADSzbMATHGoogle Scholar
  25. [25]
    S.M. Christensen and M.J. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys.B 170 (1980) 480 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    M.J. Duff and P. van Nieuwenhuizen, Quantum inequivalence of different field representations, Phys. Lett.B 94 (1980) 179 [INSPIRE].ADSGoogle Scholar
  27. [27]
    N.D. Birrel and P.C. W. Davis, Quantum fields in curved space, Cambridge University Press, New York, NY, U.S.A. (1982) [INSPIRE].Google Scholar
  28. [28]
    P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish Inc., U.S.A. (1984) [INSPIRE].
  29. [29]
    M.J. Duff and S. Ferrara, Generalized mirror symmetry and trace anomalies, Class. Quant. Grav.28 (2011) 065005 [arXiv:1009.4439] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    J.R. David, M.R. Gaberdiel and R. Gopakumar, The heat kernel on AdS 3and its applications, JHEP04 (2010) 125 [arXiv:0911.5085] [INSPIRE].
  32. [32]
    R. Gopakumar, R.K. Gupta and S. Lal, The heat kernel on AdS, JHEP11 (2011) 010 [arXiv:1103.3627] [INSPIRE].
  33. [33]
    I. Lovrekovic, One loop partition function of six dimensional conformal gravity using heat kernel on AdS, JHEP10 (2016) 064 [arXiv:1512.00858] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes, Class. Quant. Grav.27 (2010) 125001 [arXiv:0908.2657] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.W. Hawking, Quantum gravity and path integrals, Phys. Rev.D 18 (1978) 1747 [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.W. Hawking, Zeta function regularization of path integrals in curved space-time, Commun. Math. Phys.55 (1977) 133 [INSPIRE].ADSzbMATHGoogle Scholar
  38. [38]
    G. Denardo and E. Spallucci, Induced quantum gravity from heat kernel expansion, Nuovo Cim.A 69 (1982) 151 [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    I.G. Avramidi, The heat kernel approach for calculating the effective action in quantum field theory and quantum gravity, hep-th/9509077 [INSPIRE].
  40. [40]
    G. De Berredo-Peixoto, A note on the heat kernel method applied to fermions, Mod. Phys. Lett.A 16 (2001) 2463 [hep-th/0108223] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    B.S. DeWitt, Quantum field theory in curved space-time, Phys. Rept.19 (1975) 295 [INSPIRE].ADSGoogle Scholar
  43. [43]
    P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom.10 (1975) 601 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  44. [44]
    S. Karan, S. Kumar and B. Panda, General heat kernel coefficients for massless free spin-3/2 Rarita-Schwinger field, Int. J. Mod. Phys.A 33 (2018) 1850063 [arXiv:1709.08063] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    A.M. Charles, F. Larsen and D.R. Mayerson, Non-renormalization for non-supersymmetric black holes, JHEP08 (2017) 048 [arXiv:1702.08458] [INSPIRE].
  46. [46]
    H. Itoyama and K. Maruyoshi, U(N) gauged N = 2 supergravity and partial breaking of local N = 2 supersymmetry, Int. J. Mod. Phys.A 21(2006) 6191 [hep-th/0603180] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    R.C. Henry, Kretschmann scalar for a Kerr-Newman black hole, Astrophys. J.535 (2000) 350 [astro-ph/9912320] [INSPIRE].
  48. [48]
    C. Cherubini, D. Bini, S. Capozziello and R. Ruffini, Second order scalar invariants of the Riemann tensor: applications to black hole space-times, Int. J. Mod. Phys.D 11 (2002) 827 [gr-qc/0302095] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations