Advertisement

Dark matter and flavor changing in the flipped 3-3-1 model

  • D.T. Huong
  • D.N. Dinh
  • L.D. Thien
  • Phung Van DongEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The flipped 3-3-1 model discriminates lepton families instead of the quark ones in normal sense, where the left-handed leptons are in two triplets plus one sextet while the left-handed quarks are in antitriplets, under SU(3)L. We investigate a minimal setup of this model and determine novel consequences of dark matter stability, neutrino mass generation, and lepton flavor violation. Indeed, the model conserves a noncommutative B−L symmetry, which prevents the unwanted vacua and interactions and provides the matter parity and dark matter candidates that along with normal matter form gauge multiplets. The neutrinos obtain suitable masses via a type I and II seesaw mechanism. The nonuniversal couplings of Z′ with leptons govern lepton flavor violating processes such as μ → 3e, μ → e\( \overline{\nu} \)μνe, μ-e conversion in nuclei, semileptonic τμ(e) decays, as well as the nonstandard interactions of neutrinos with matter. This Z′ may also set the dark matter observables and give rise to the LHC dilepton and dijet signals.

Keywords

Neutrino Physics Cosmology of Theories beyond the SM Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    F. Pisano and V. Pleitez, An SU(3) × U(1) model for electroweak interactions, Phys. Rev.D 46 (1992) 410 [hep-ph/9206242] [INSPIRE].
  2. [2]
    P.H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett.69 (1992) 2889 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    R. Foot, O.F. Hernandez, F. Pisano and V. Pleitez, Lepton masses in an SU(3)L × U(1)Ngauge model, Phys. Rev.D 47 (1993) 4158 [hep-ph/9207264] [INSPIRE].
  4. [4]
    M. Singer, J.W.F. Valle and J. Schechter, Canonical neutral current predictions from the weak electromagnetic gauge group SU(3) × U(1), Phys. Rev.D 22 (1980) 738 [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.C. Montero, F. Pisano and V. Pleitez, Neutral currents and GIM mechanism in SU(3)L × U(1)Nmodels for electroweak interactions, Phys. Rev.D 47 (1993) 2918 [hep-ph/9212271] [INSPIRE].
  6. [6]
    R. Foot, H.N. Long and T.A. Tran, SU(3)L ⊗ U(1)N and SU(4)L ⊗ U(1)Ngauge models with right-handed neutrinos, Phys. Rev.D 50 (1994) R34 [hep-ph/9402243] [INSPIRE].
  7. [7]
    F. Pisano, A simple solution for the flavor question, Mod. Phys. Lett.A 11 (1996) 2639 [hep-ph/9609358] [INSPIRE].
  8. [8]
    A. Doff and F. Pisano, Charge quantization in the largest leptoquark bilepton chiral electroweak scheme, Mod. Phys. Lett.A 14 (1999) 1133 [hep-ph/9812303] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    C.A. de Sousa Pires and O.P. Ravinez, Charge quantization in a chiral bilepton gauge model, Phys. Rev.D 58 (1998) 035008 [hep-ph/9803409] [INSPIRE].
  10. [10]
    C.A. de Sousa Pires, Remark on the vector-like nature of the electromagnetism and the electric charge quantization, Phys. Rev.D 60 (1999) 075013 [hep-ph/9902406] [INSPIRE].
  11. [11]
    P.V. Dong and H.N. Long, Electric charge quantization in SU(3)C × SU(3)L × U(1)Xmodels, Int. J. Mod. Phys.A 21 (2006) 6677 [hep-ph/0507155] [INSPIRE].
  12. [12]
    P.B. Pal, The strong CP question in SU(3)C × SU(3)L × U(1)Nmodels, Phys. Rev.D 52 (1995) 1659 [hep-ph/9411406] [INSPIRE].
  13. [13]
    A.G. Dias, C.A. de S. Pires and P.S. Rodrigues da Silva, Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model, Phys. Rev.D 68 (2003) 115009 [hep-ph/0309058] [INSPIRE].
  14. [14]
    A.G. Dias and V. Pleitez, Stabilizing the invisible axion in 3-3-1 models, Phys. Rev.D 69 (2004) 077702 [hep-ph/0308037] [INSPIRE].
  15. [15]
    P.V. Dong, H.N. Long and H.T. Hung, Question of Peccei-Quinn symmetry and quark masses in the economical 3-3-1 model, Phys. Rev.D 86 (2012) 033002 [arXiv:1205.5648] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.B. Tully and G.C. Joshi, Generating neutrino mass in the 3-3-1 model, Phys. Rev.D 64 (2001) 011301 [hep-ph/0011172] [INSPIRE].
  17. [17]
    A.G. Dias, C.A. de S. Pires and P.S. Rodrigues da Silva, Naturally light right-handed neutrinos in a 3-3-1 model, Phys. Lett.B 628 (2005) 85 [hep-ph/0508186] [INSPIRE].
  18. [18]
    D. Chang and H.N. Long, Interesting radiative patterns of neutrino mass in an SU(3)C × SU(3)L × U(1)Xmodel with right-handed neutrinos, Phys. Rev. D 73 (2006) 053006 [hep-ph/0603098] [INSPIRE].
  19. [19]
    P.V. Dong, H.N. Long and D.V. Soa, Neutrino masses in the economical 3-3-1 model, Phys. Rev.D 75 (2007) 073006 [hep-ph/0610381] [INSPIRE].
  20. [20]
    P.V. Dong and H.N. Long, Neutrino masses and lepton flavor violation in the 3-3-1 model with right-handed neutrinos, Phys. Rev.D 77 (2008) 057302 [arXiv:0801.4196] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.V. Dong, L.T. Hue, H.N. Long and D.V. Soa, The 3-3-1 model with A 4flavor symmetry, Phys. Rev.D 81 (2010) 053004 [arXiv:1001.4625] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P.V. Dong, H.N. Long, D.V. Soa and V.V. Vien, The 3-3-1 model with S 4flavor symmetry, Eur. Phys. J.C 71 (2011) 1544 [arXiv:1009.2328] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    P.V. Dong, H.N. Long, C.H. Nam and V.V. Vien, The S 3flavor symmetry in 3-3-1 models, Phys. Rev.D 85 (2012) 053001 [arXiv:1111.6360] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.M. Boucenna, S. Morisi and J.W.F. Valle, Radiative neutrino mass in 3-3-1 scheme, Phys. Rev.D 90 (2014) 013005 [arXiv:1405.2332] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.M. Boucenna, R.M. Fonseca, F. Gonzalez-Canales and J.W.F. Valle, Small neutrino masses and gauge coupling unification, Phys. Rev.D 91 (2015) 031702 [arXiv:1411.0566] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.M. Boucenna, J.W.F. Valle and A. Vicente, Predicting charged lepton flavor violation from 3-3-1 gauge symmetry, Phys. Rev.D 92 (2015) 053001 [arXiv:1502.07546] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Okada, N. Okada and Y. Orikasa, Radiative seesaw mechanism in a minimal 3-3-1 model, Phys. Rev.D 93 (2016) 073006 [arXiv:1504.01204] [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    C.A. d.S. Pires, Neutrino mass mechanisms in 3-3-1 models: a short review, arXiv:1412.1002 [INSPIRE].
  29. [29]
    A.G. Dias, C.A. de S. Pires and P.S. Rodrigues da Silva, The left-right SU(3)L× SU(3)R× U(1)Xmodel with light, keV and heavy neutrinos, Phys. Rev.D 82 (2010) 035013 [arXiv:1003.3260] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D.T. Huong and P.V. Dong, Left-right asymmetry and 750 GeV diphoton excess, Phys. Rev.D 93 (2016) 095019 [arXiv:1603.05146] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Unifying left-right symmetry and 3-3-1 electroweak theories, Phys. Lett.B 766 (2017) 35 [arXiv:1611.02066] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  32. [32]
    D. Fregolente and M.D. Tonasse, Selfinteracting dark matter from an SU(3)L × U(1)Nelectroweak model, Phys. Lett.B 555 (2003) 7 [hep-ph/0209119] [INSPIRE].
  33. [33]
    H.N. Long and N.Q. Lan, Selfinteracting dark matter and Higgs bosons in the SU(3)C × SU(3)L × U(1)Nmodel with right-handed neutrinos, Europhys. Lett.64 (2003) 571 [hep-ph/0309038] [INSPIRE].
  34. [34]
    S. Filippi, W.A. Ponce and L.A. Sanchez, Dark matter from the scalar sector of 3-3-1 models without exotic electric charges, Europhys. Lett.73 (2006) 142 [hep-ph/0509173] [INSPIRE].
  35. [35]
    C.A. de S. Pires and P.S. Rodrigues da Silva, Scalar bilepton dark matter, JCAP12 (2007) 012 [arXiv:0710.2104] [INSPIRE].
  36. [36]
    J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz and P.S. Rodrigues da Silva, WIMPs in a 3-3-1 model with heavy sterile neutrinos, Phys. Rev.D 83 (2011) 065024 [arXiv:1010.4097] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo and P.S. Rodrigues da Silva, On the connection of gamma-rays, dark matter and Higgs searches at LHC, Phys. Rev.D 86 (2012) 075011 [arXiv:1206.5779] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Profumo and F.S. Queiroz, Constraining the Zmass in 3-3-1 models using direct dark matter detection, Eur. Phys. J.C 74 (2014) 2960 [arXiv:1307.7802] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    C. Kelso, C.A. de S. Pires, S. Profumo, F.S. Queiroz and P.S. Rodrigues da Silva, A 3-3-1 WIMPy dark radiation model, Eur. Phys. J.C 74 (2014) 2797 [arXiv:1308.6630] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    P.S. Rodrigues da Silva, A brief review on WIMPs in 3-3-1 electroweak gauge models, Phys. Int.7 (2016) 15 [arXiv:1412.8633] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    P.V. Dong, T.P. Nguyen and D.V. Soa, 3-3-1 model with inert scalar triplet, Phys. Rev.D 88 (2013) 095014 [arXiv:1308.4097] [INSPIRE].
  42. [42]
    P.V. Dong, N.T.K. Ngan and D.V. Soa, Simple 3-3-1 model and implication for dark matter, Phys. Rev.D 90 (2014) 075019 [arXiv:1407.3839] [INSPIRE].ADSGoogle Scholar
  43. [43]
    P.V. Dong, C.S. Kim, D.V. Soa and N.T. Thuy, Investigation of dark matter in minimal 3-3-1 models, Phys. Rev.D 91 (2015) 115019 [arXiv:1501.04385] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P.V. Dong, H.T. Hung and T.D. Tham, 3-3-1-1 model for dark matter, Phys. Rev.D 87 (2013) 115003 [arXiv:1305.0369] [INSPIRE].
  45. [45]
    P.V. Dong, D.T. Huong, F.S. Queiroz and N.T. Thuy, Phenomenology of the 3-3-1-1 model, Phys. Rev.D 90 (2014) 075021 [arXiv:1405.2591] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P.V. Dong, Unifying the electroweak and B-L interactions, Phys. Rev.D 92 (2015) 055026 [arXiv:1505.06469] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D.T. Huong and P.V. Dong, Neutrino masses and superheavy dark matter in the 3-3-1-1 model, Eur. Phys. J.C 77 (2017) 204 [arXiv:1605.01216] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A. Alves, G. Arcadi, P.V. Dong, L. Duarte, F.S. Queiroz and J.W.F. Valle, Matter-parity as a residual gauge symmetry: probing a theory of cosmological dark matter, Phys. Lett.B 772 (2017) 825 [arXiv:1612.04383] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    C.P. Ferreira, M.M. Guzzo and P.C. de Holanda, Cosmological bounds of sterile neutrinos in a SU(3)C SU(3)L SU(3)R U(1)Nmodel as dark matter candidates, Braz. J. Phys.46 (2016) 453 [arXiv:1509.02977] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    P.V. Dong, D.T. Huong, F.S. Queiroz, J.W.F. Valle and C.A. Vaquera-Araujo, The dark side of flipped trinification, JHEP04 (2018) 143 [arXiv:1710.06951] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    D.T. Huong, P.V. Dong, C.S. Kim and N.T. Thuy, Inflation and leptogenesis in the 3-3-1-1 model, Phys. Rev.D 91 (2015) 055023 [arXiv:1501.00543] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Van Dong, D.T. Huong, D.A. Camargo, F.S. Queiroz and J.W.F. Valle, Asymmetric dark matter, inflation and leptogenesis from B-L symmetry breaking, Phys. Rev.D 99 (2019) 055040 [arXiv:1805.08251] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    P.V. Dong, D.Q. Phong, D.V. Soa and N.C. Thao, The economical 3-3-1 model revisited, Eur. Phys. J.C 78 (2018) 653 [arXiv:1706.06152] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    D.J. Gross and R. Jackiw, Effect of anomalies on quasirenormalizable theories, Phys. Rev.D 6 (1972) 477 [INSPIRE].ADSGoogle Scholar
  55. [55]
    H. Georgi and S.L. Glashow, Gauge theories without anomalies, Phys. Rev.D 6 (1972) 429 [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Banks and H. Georgi, Comment on gauge theories without anomalies, Phys. Rev.D 14 (1976) 1159 [INSPIRE].ADSGoogle Scholar
  57. [57]
    S. Okubo, Gauge groups without triangular anomaly, Phys. Rev.D 16 (1977) 3528 [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.M. Fonseca and M. Hirsch, A flipped 3-3-1 model, JHEP08 (2016) 003 [arXiv:1606.01109] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    D. Ng, The electroweak theory of SU(3) × U(1), Phys. Rev.D 49 (1994) 4805 [hep-ph/9212284] [INSPIRE].
  60. [60]
    D. Gomez Dumm, F. Pisano and V. Pleitez, Flavor changing neutral currents in SU(3) × U(1) models, Mod. Phys. Lett.A 9 (1994) 1609 [hep-ph/9307265] [INSPIRE].
  61. [61]
    H.N. Long and V.T. Van, Quark family discrimination and flavor changing neutral currents in the SU(3)C × SU(3)L × U(1) model with right-handed neutrinos, J. Phys.G 25 (1999) 2319 [hep-ph/9909302] [INSPIRE].
  62. [62]
    A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The anatomy of quark flavour observables in 3-3-1 models in the flavour precision era, JHEP02 (2013) 023 [arXiv:1211.1237] [INSPIRE].
  63. [63]
    A.J. Buras, F. De Fazio and J. Girrbach, 3-3-1 models facing new b +μ data, JHEP02 (2014) 112 [arXiv:1311.6729] [INSPIRE].
  64. [64]
    R. Gauld, F. Goertz and U. Haisch, An explicit Z′-boson explanation of the B → K μ +μ anomaly, JHEP01 (2014) 069 [arXiv:1310.1082] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    A.J. Buras and F. De Fazio, ε′/ε in 3-3-1 models, JHEP 03 (2016) 010 [arXiv:1512.02869] [INSPIRE].
  66. [66]
    P. Van Dong, N.T.K. Ngan, T.D. Tham, L.D. Thien and N.T. Thuy, Phenomenology of the simple 3-3-1 model with inert scalars, Phys. Rev.D 99 (2019) 095031 [arXiv:1512.09073] [INSPIRE].ADSGoogle Scholar
  67. [67]
    R. Delbourgo and A. Salam, The gravitational correction to PCAC, Phys. Lett.B 40 (1972) 381 [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys.B 234 (1984) 269 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  69. [69]
    A.G. Dias, R. Martinez and V. Pleitez, Concerning the Landau pole in 3-3-1 models, Eur. Phys. J.C 39 (2005) 101 [hep-ph/0407141] [INSPIRE].
  70. [70]
    A.G. Dias, Evading the few TeV perturbative limit in 3-3-1 models, Phys. Rev.D 71 (2005) 015009 [hep-ph/0412163] [INSPIRE].
  71. [71]
    P.V. Dong and H.N. Long, U(1)Qinvariance and SU(3)C × SU(3)L × U(1)Xmodels with β arbitrary, Eur. Phys. J.C 42 (2005) 325 [hep-ph/0506022] [INSPIRE].
  72. [72]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  73. [73]
    P.V. Dong and D.T. Si, Kinetic mixing effect in the 3-3-1-1 model, Phys. Rev.D 93 (2016) 115003 [arXiv:1510.06815] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A.G. Dias, J.C. Montero and V. Pleitez, 3-3-1 models at electroweak scale, Phys. Lett.B 637 (2006) 85 [hep-ph/0511084] [INSPIRE].
  75. [75]
    A.G. Dias, J.C. Montero and V. Pleitez, Closing the SU(3)L × U(1)Xsymmetry at electroweak scale, Phys. Rev.D 73 (2006) 113004 [hep-ph/0605051] [INSPIRE].
  76. [76]
    T. Goto, Y. Okada and Y. Yamamoto, Tau and muon lepton flavor violations in the littlest Higgs model with T-parity, Phys. Rev.D 83 (2011) 053011 [arXiv:1012.4385] [INSPIRE].ADSGoogle Scholar
  77. [77]
    A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys.B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].
  78. [78]
    M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder and C. Tarantino, Charged lepton flavour violation and (g − 2)μin the littlest Higgs model with T-parity: a clear distinction from supersymmetry, JHEP05 (2007) 013 [hep-ph/0702136] [INSPIRE].
  79. [79]
    A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck and C. Promberger, Lepton flavour violation in the presence of a fourth generation of quarks and leptons, JHEP09 (2010) 104 [arXiv:1006.5356] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  80. [80]
    D.N. Dinh, A. Ibarra, E. Molinaro and S.T. Petcov, The μ-e conversion in nuclei, μ → eγ, μ→3e decays and TeV scale see-saw scenarios of neutrino mass generation, JHEP08 (2012) 125 [Erratum ibid. 09 (2013) 023] [arXiv:1205.4671] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    D.N. Dinh and S.T. Petcov, Lepton flavor violating τ decays in TeV scale type I see-saw and Higgs triplet models, JHEP09 (2013) 086 [arXiv:1308.4311] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  83. [83]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1of pp collision data collected at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Phys. Rev.D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Ilakovac, B.A. Kniehl and A. Pilaftsis, Semileptonic lepton number/flavor violating tau decays in Majorana neutrino models, Phys. Rev. D 52 (1995) 3993 [hep-ph/9503456] [INSPIRE].
  85. [85]
    X.-G. He, J. Tandean and G. Valencia, Lepton-flavor-violating semileptonic τ decay and K →πν \( \overline{\nu} \), arXiv:1904.04043[INSPIRE].
  86. [86]
    A. Cerri et al., Opportunities in flavour physics at the HL-LHC and HE-LHC, arXiv:1812.07638 [INSPIRE].
  87. [87]
    H.-B. Li and S.-H. Zhu, Mini-review of rare charmonium decays at BESIII, Chin. Phys.C 36 (2012) 932 [arXiv:1202.2955] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    Belle-II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].
  89. [89]
    L. Calibbi and G. Signorelli, Charged lepton flavour violation: an experimental and theoretical introduction, Riv. Nuovo Cim.41 (2018) 71 [arXiv:1709.00294] [INSPIRE].Google Scholar
  90. [90]
    SINDRUM II collaboration, Improved limit on the branching ratio of μ → e conversion on lead, Phys. Rev. Lett.76 (1996) 200 [INSPIRE].CrossRefGoogle Scholar
  91. [91]
    SINDRUM II collaboration, A search for muon to electron conversion in muonic gold, Eur. Phys. J.C 47 (2006) 337 [INSPIRE].CrossRefGoogle Scholar
  92. [92]
    COMET collaboration, A search for muon-to-electron conversion at J-PARC: the COMET experiment, PTEP 2013 (2013) 022C01 [INSPIRE].Google Scholar
  93. [93]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev.D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].ADSGoogle Scholar
  94. [94]
    Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments, Phys. Lett.B 359 (1995) 141 [hep-ph/9507344] [INSPIRE].
  95. [95]
    Z. Berezhiani and A. Rossi, Limits on the nonstandard interactions of neutrinos from e +e colliders, Phys. Lett.B 535 (2002) 207 [hep-ph/0111137] [INSPIRE].
  96. [96]
    S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP03 (2003) 011 [hep-ph/0302093] [INSPIRE].
  97. [97]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys.76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].
  98. [98]
    D. Meloni, T. Ohlsson and H. Zhang, Exact and approximate formulas for neutrino mixing and oscillations with non-standard interactions, JHEP04 (2009) 033 [arXiv:0901.1784] [INSPIRE].CrossRefADSGoogle Scholar
  99. [99]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP08 (2018) 180 [arXiv:1805.04530] [INSPIRE].CrossRefADSGoogle Scholar
  100. [100]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z′ physics with early LHC data, Phys. Rev.D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].
  101. [101]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  102. [102]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev.D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  103. [103]
    D.T. Huong, P.V. Dong, N.T. Duy, N.T. Nhuan and L.D. Thien, Investigation of dark matter in the 3-2-3-1 model, Phys. Rev.D 98 (2018) 055033 [arXiv:1802.10402] [INSPIRE].ADSGoogle Scholar
  104. [104]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys.B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  105. [105]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys.11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].CrossRefADSGoogle Scholar
  106. [106]
    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett.119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • D.T. Huong
    • 1
  • D.N. Dinh
    • 1
  • L.D. Thien
    • 2
    • 3
  • Phung Van Dong
    • 3
    Email author
  1. 1.Institute of PhysicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Graduate University of Science and Technology, Vietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Phenikaa Institute for Advanced Study and Faculty of Basic SciencePhenikaa UniversityHanoiVietnam

Personalised recommendations