Advertisement

Exact scattering amplitudes in conformal fishnet theory

  • G. P. KorchemskyEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the leading-color contribution to four-particle scattering amplitude in four-dimensional conformal fishnet theory that arises as a special limit of γ-deformed \( \mathcal{N}=4 \) SYM. We show that the single-trace partial amplitude is protected from quantum corrections whereas the double-trace partial amplitude is a nontrivial infrared finite function of the ratio of Mandelstam invariants. Applying the Lehmann-Symanzik-Zimmerman reduction procedure to the known expression of a four-point correlation function in the fishnet theory, we derive a new representation for this function that is valid for arbitrary coupling. We use this representation to find the asymptotic behavior of the double-trace amplitude in the high-energy limit and to compute the corresponding exact Regge trajectories. We verify that at weak coupling the expressions obtained are in agreement with an explicit five-loop calculation.

Keywords

Scattering Amplitudes Conformal Field Theory Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Talks at the conference Amplitudes 2018, https://conf.slac.stanford.edu/amplitudes/, (2018).
  2. [2]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
  5. [5]
    M. Bullimore and D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056 [INSPIRE].
  6. [6]
    D. Chicherin and E. Sokatchev, Conformal anomaly of generalized form factors and finite loop integrals, JHEP04 (2018) 082 [arXiv:1709.03511] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
  8. [8]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
  9. [9]
    Z. Bern, M. Enciso, H. Ita and M. Zeng, Dual conformal symmetry, integration-by-parts reduction, differential equations and the nonplanar sector, Phys. Rev.D 96 (2017) 096017 [arXiv:1709.06055] [INSPIRE].
  10. [10]
    Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual conformal structure beyond the planar limit, Phys. Rev. Lett.121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudesWilson loops duality for the first non-planar correction, JHEP08 (2018) 122 [arXiv:1802.09395] [INSPIRE].
  12. [12]
    D. Chicherin, J.M. Henn and E. Sokatchev, Implications of nonplanar dual conformal symmetry, JHEP09 (2018) 012 [arXiv:1807.06321] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Ö. GürdoǦan and V. Kazakov, New integrable 4D quantum field theories from strongly deformed planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.117 (2016) 201602 [arXiv:1512.06704] [INSPIRE].
  14. [14]
    A.B. Zamolodchikov, ‘Fishnetdiagrams as a completely integrable system, Phys. Lett.B 97 (1980) 63 [INSPIRE].
  15. [15]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP05 (2005) 033 [hep-th/0502086] [INSPIRE].
  16. [16]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys.B 447 (1995) 95[hep-th/9503121] [INSPIRE].
  18. [18]
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-L. Zhong, Yangian symmetry for bi-scalar loop amplitudes, JHEP05 (2018) 003 [arXiv:1704.01967] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-L. Zhong, Yangian symmetry for fishnet Feynman graphs, Phys. Rev.D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].
  20. [20]
    A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative search for fixed lines in large N gauge theories, JHEP08 (2005) 011 [hep-th/0505099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Pomoni and L. Rastelli, Large N field theory and AdS tachyons, JHEP04 (2009) 020 [arXiv:0805.2261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Fokken, C. Sieg and M. Wilhelm, A piece of cake: the ground-state energies in γ i-deformed N =4 SYM theory at leading wrapping order, JHEP09 (2014) 078 [arXiv:1405.6712] [INSPIRE].
  23. [23]
    J. Fokken, C. Sieg and M. Wilhelm, Non-conformality of γ i-deformed N = 4 SYM theory, J. Phys.A 47 (2014) 455401 [arXiv:1308.4420] [INSPIRE].
  24. [24]
    C. Sieg and M. Wilhelm, On a CFT limit of planar γ i-deformed N = 4 SYM theory, Phys. Lett.B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].
  25. [25]
    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed N = 4 supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett.120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].
  26. [26]
    J. Caetano, Ö. GürdoǦan and V. Kazakov, Chiral limit of N = 4 SYM and ABJM and integrable Feynman graphs, JHEP03 (2018) 077 [arXiv:1612.05895] [INSPIRE].
  27. [27]
    N. Gromov, V. Kazakov, G. Korchemsky, S. Negro and G. Sizov, Integrability of conformal fishnet theory, JHEP01 (2018) 095 [arXiv:1706.04167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Gromov, V. Kazakov and G. Korchemsky, Exact correlation functions in conformal fishnet theory, arXiv:1808.02688 [INSPIRE].
  29. [29]
    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys.250 (2012) 1 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  31. [31]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  32. [32]
    V.N. Gribov, The theory of complex angular momenta: Gribov lectures on theoretical physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE].
  33. [33]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys.63 (1977) 1 [INSPIRE].
  34. [34]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in Euclidean conformal quantum field theory, Phys. Rev.D 13 (1976) 887 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    G.P. Korchemsky, On level crossing in conformal field theories, JHEP03 (2016) 212 [arXiv:1512.05362] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Basso and D.-L. Zhong, Continuum limit of fishnet graphs and AdS σ-model, JHEP01 (2019) 002 [arXiv:1806.04105] [INSPIRE].
  38. [38]
    J.M. Henn and B. Mistlberger, Four-gluon scattering at three loops, infrared structure and the Regge limit, Phys. Rev. Lett.117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys.51 (2003) 311 [hep-ph/0306057] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut de Physique Théorique, (Unité Mixte de Recherche 3681 du CNRS) Université Paris Saclay, CNRS, CEAGif-sur-YvetteFrance

Personalised recommendations