Advertisement

Holomorphic anomaly of 2d Yang-Mills theory on a torus revisited

  • Kazumi Okuyama
  • Kazuhiro SakaiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study the large N ’t Hooft expansion of the chiral partition function of 2d U(N) Yang-Mills theory on a torus. There is a long-standing puzzle that no explicit holomorphic anomaly equation is known for the partition function, although it admits a topological string interpretation. Based on the chiral boson interpretation we clarify how holomorphic anomaly arises and propose a natural anti-holomorphic deformation of the partition function. Our deformed partition function obeys a fairly traditional holomorphic anomaly equation. Moreover, we find a closed analytic expression for the deformed partition function. We also study the behavior of the deformed partition function both in the strong coupling/large area limit and in the weak coupling/small area limit. In particular, we observe that drastic simplification occurs in the weak coupling/small area limit, giving another nontrivial support for our anti-holomorphic deformation.

Keywords

Field Theories in Lower Dimensions Topological Strings 1/N Expansion 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.A. Migdal, Recursion Equations in Gauge Theories, Sov. Phys. JETP42 (1975) 413 [Zh. Eksp. Teor. Fiz.69 (1975) 810] [INSPIRE].
  2. [2]
    B.E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Mod. Phys. Lett.A 5 (1990) 693 [INSPIRE].
  3. [3]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys.9 (1992) 303 [hep-th/9204083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys.141 (1991) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Blau and G. Thompson, Quantum Yang-Mills theory on arbitrary surfaces, Int. J. Mod. Phys.A 7 (1992) 3781 [INSPIRE].
  6. [6]
    M. Blau and G. Thompson, Lectures on 2d gauge theories: Topological aspects and path integral techniques, in proceedings of the Summer School in High-Energy Physics and Cosmology, Trieste, Italy, 14 June-30 July 1993, pp. 0175-244 [hep-th/9310144] [INSPIRE].
  7. [7]
    J.A. Minahan and A.P. Polychronakos, Equivalence of two-dimensional QCD and the C = 1 matrix model, Phys. Lett.B 312 (1993) 155 [hep-th/9303153] [INSPIRE].
  8. [8]
    M.R. Douglas, Conformal field theory techniques in large N Yang-Mills theory, in proceedings of the NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, Cargèse, France, 12-21 May 1993, hep-th/9311130 [INSPIRE].
  9. [9]
    R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys.B 493 (1997) 588 [hep-th/9609022] [INSPIRE].
  10. [10]
    S. Cordes, G.W. Moore and S. Ramgoolam, Large N 2D Yang-Mills theory and topological string theory, Commun. Math. Phys.185 (1997) 543 [hep-th/9402107] [INSPIRE].
  11. [11]
    S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl.41 (1995) 184 [hep-th/9411210] [INSPIRE].
  12. [12]
    R. Dijkgraaf, Mirror Symmetry and Elliptic Curves, Prog. Math.129 (1995) 149.MathSciNetzbMATHGoogle Scholar
  13. [13]
    S. Li, BCOV theory on the elliptic curve and higher genus mirror symmetry, arXiv:1112.4063 [INSPIRE].
  14. [14]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: From four-dimensional SYM to two-dimensional YM, Phys. Rev.D 77 (2008) 047901 [arXiv:0707.2699] [INSPIRE].
  15. [15]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP05 (2008) 017 [arXiv:0711.3226] [INSPIRE].
  16. [16]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP12 (2012) 067 [arXiv:0906.0638] [INSPIRE].
  17. [17]
    S. Giombi and V. Pestun, The 1/2 BPSt Hooft loops in N = 4 SYM as instantons in 2d Yang-Mills, J. Phys.A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].
  18. [18]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett.106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].
  19. [19]
    Y. Tachikawa, A brief review of the 2d/4d correspondences, J. Phys.A 50 (2017) 443012 [arXiv:1608.02964] [INSPIRE].
  20. [20]
    C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058 [INSPIRE].
  21. [21]
    M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills and non-perturbative topological strings, Nucl. Phys.B 715 (2005) 304 [hep-th/0411280] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev.D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].
  23. [23]
    D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys.B 400 (1993) 181 [hep-th/9301068] [INSPIRE].
  24. [24]
    R.E. Rudd, The String partition function for QCD on the torus, hep-th/9407176 [INSPIRE].
  25. [25]
    M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, Prog. Math.129 (1995) 165.MathSciNetzbMATHGoogle Scholar
  26. [26]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys.165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J.A. Minahan, D. Nemeschansky and N.P. Warner, Partition functions for BPS states of the noncritical E 8string, Adv. Theor. Math. Phys.1 (1998) 167 [hep-th/9707149] [INSPIRE].
  28. [28]
    T.W. Grimm, A. Klemm, M. Mariño and M. Weiss, Direct Integration of the Topological String, JHEP08 (2007) 058 [hep-th/0702187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Klemm, M. Poretschkin, T. Schimannek and M. Westerholt-Raum, Direct Integration for Mirror Curves of Genus Two and an Almost Meromorphic Siegel Modular Form, arXiv:1502.00557 [INSPIRE].
  30. [30]
    A. Kanazawa and J. Zhou, Lectures on BCOV holomorphic anomaly equations, Fields Inst. Monogr.34 (2015) 445 [arXiv:1409.4105] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys.B 400 (1993) 161 [hep-th/9212149] [INSPIRE].
  32. [32]
    K. Okuyama and K. Sakai, Resurgence analysis of 2d Yang-Mills theory on a torus, JHEP08 (2018) 065 [arXiv:1806.00189] [INSPIRE].
  33. [33]
    S. Datta, J.R. David and S.P. Kumar, Conformal perturbation theory and higher spin entanglement entropy on the torus, JHEP04 (2015) 041 [arXiv:1412.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Böhm, K. Bringmann, A. Buchholz and H. Markwig, Tropical mirror symmetry for elliptic curves, arXiv:1309.5893.
  35. [35]
    S. Li, Feynman Graph Integrals and Almost Modular Forms, Commun. Num. Theor. Phys.6 (2012) 129 [arXiv:1112.4015] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Yamaguchi and S.-T. Yau, Topological string partition functions as polynomials, JHEP07 (2004) 047 [hep-th/0406078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M. Alim and J.D. Länge, Polynomial Structure of the (Open) Topological String Partition Function, JHEP10 (2007) 045 [arXiv:0708.2886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Alim, S.-T. Yau and J. Zhou, Airy Equation for the Topological String Partition Function in a Scaling Limit, Lett. Math. Phys.106 (2016) 719 [arXiv:1506.01375] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Hosono, BCOV ring and holomorphic anomaly equation, Adv. Stud. Pure Math.59 (2008) 79 [arXiv:0810.4795] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  40. [40]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech.1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].
  42. [42]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological Strings from Quantum Mechanics, Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    L. Griguolo, D. Seminara and R.J. Szabo, Two-dimensional Yang-Mills theory and moduli spaces of holomorphic differentials, Phys. Lett.B 600 (2004) 275 [hep-th/0408055] [INSPIRE].
  44. [44]
    L. Griguolo, D. Seminara and R.J. Szabo, Instantons, fluxons and open gauge string theory, Adv. Theor. Math. Phys.9 (2005) 775 [hep-th/0411277] [INSPIRE].
  45. [45]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly, Annales Henri Poincaré 17 (2016) 331 [arXiv:1308.1695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsShinshu UniversityMatsumotoJapan
  2. 2.Institute of PhysicsMeiji Gakuin UniversityYokohamaJapan

Personalised recommendations