Advertisement

Six-Gluon amplitudes in planar \( \mathcal{N} \) = 4 super-Yang-Mills theory at six and seven loops

  • Simon Caron-Huot
  • Lance J. Dixon
  • Falko Dulat
  • Matt von Hippel
  • Andrew J. McLeodEmail author
  • Georgios Papathanasiou
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relations and using the cosmic Galois coaction principle. Starting from a minimal space of functions constructed using these principles, we identify the amplitude by matching its symmetries and predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV amplitudes are uniquely determined using only the multi-Regge and leading collinear limits. Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion around the collinear limit, which we obtain from the Pentagon Operator Product Expansion, and in particular from its single-gluon bound state contribution. We study the MHV amplitude in the self-crossing limit, where its singular terms agree with previous predictions. Analyzing and plotting the amplitudes along various kinematical lines, we continue to find remarkable stability between loop orders.

Keywords

Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11020_MOESM1_ESM.zip (0 kb)
ESM 1 (ZIP 265 bytes)

References

  1. [1]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys.B 121 (1977) 77 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys.B 122 (1977) 253 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev.D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
  4. [4]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
  5. [5]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev.D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
  6. [6]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE].
  7. [7]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local Spacetime Physics from the Grassmannian, JHEP01 (2011) 108 [arXiv:0912.3249] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The Soft-Collinear Bootstrap: N = 4 Yang-Mills Amplitudes at Six and Seven Loops, JHEP03 (2012) 032 [arXiv:1112.6432] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016) [arXiv:1212.5605] [INSPIRE].
  11. [11]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  12. [12]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP12 (2014) 182 [arXiv:1312.7878] [INSPIRE].
  13. [13]
    A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for super-Yang-Mills amplitudes, JHEP05 (2013) 106 [arXiv:1212.6228] [INSPIRE].
  14. [14]
    A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude revisited, JHEP01 (2014) 169 [arXiv:1307.1443] [INSPIRE].
  15. [15]
    V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in \( \mathcal{N} \) = 4 SYM, JHEP03 (2010) 099 [arXiv:0911.5332] [INSPIRE].
  16. [16]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in \( \mathcal{N} \) = 4 SYM, JHEP05 (2010) 084 [arXiv:1003.1702] [INSPIRE].
  17. [17]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
  18. [18]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE].
  19. [19]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE].
  20. [20]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in \( \mathcal{N} \) = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  21. [21]
    S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of Planar \( \mathcal{N} \) = 4 Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  22. [22]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
  23. [23]
    J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes in \( \mathcal{N} \) = 4 Yang-Mills theory, JHEP09 (2013) 111 [arXiv:1306.1833] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  24. [24]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
  25. [25]
    J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster Polylogarithms for Scattering Amplitudes, J. Phys.A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  26. [26]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar \( \mathcal{N} \) = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  27. [27]
    L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping six-gluon scattering in planar \( \mathcal{N} \) = 4 super-Yang-Mills theory, PoS(LL2014)077 (2014) [arXiv:1407.4724] [INSPIRE].
  28. [28]
    J. Golden and M. Spradlin, A Cluster Bootstrap for Two-Loop MHV Amplitudes, JHEP02 (2015) 002 [arXiv:1411.3289] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
  30. [30]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
  32. [32]
    L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, Multi-loop positivity of the planar \( \mathcal{N} \) =4 SYM six-point amplitude, JHEP02 (2017) 112 [arXiv:1611.08325] [INSPIRE].
  33. [33]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
  34. [34]
    L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE].
  35. [35]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
  36. [36]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE].
  40. [40]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev.D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
  41. [41]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    D. Nguyen, M. Spradlin and A. Volovich, New Dual Conformally Invariant Off-Shell Integrals, Phys. Rev.D 77 (2008) 025018 [arXiv:0709.4665] [INSPIRE].
  43. [43]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys.B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    M.F. Paulos, M. Spradlin and A. Volovich, Mellin Amplitudes for Dual Conformal Integrals, JHEP08 (2012) 072 [arXiv:1203.6362] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The Double Pentaladder Integral to All Orders, JHEP07 (2018) 170 [arXiv:1806.01361] [INSPIRE].
  46. [46]
    J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Rationalizing Loop Integration, JHEP08 (2018) 184 [arXiv:1805.10281] [INSPIRE].
  47. [47]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE].
  48. [48]
    J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].
  49. [49]
    J.L. Bourjaily, Y.-H. He, A.J. Mcleod, M. Von Hippel and M. Wilhelm, Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms, Phys. Rev. Lett.121 (2018) 071603 [arXiv:1805.09326] [INSPIRE].
  50. [50]
    J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Bounded Collection of Feynman Integral Calabi-Yau Geometries, Phys. Rev. Lett.122 (2019) 031601 [arXiv:1810.07689] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J.128 (2005) 209 [math/0208144] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  52. [52]
    A. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.
  53. [53]
    F.C. Brown, Multiple zeta values and periods of moduli spaces \( {\overline{\mathfrak{M}}}_{0,n}\left(\mathbb{R}\right) \), Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419].CrossRefMathSciNetGoogle Scholar
  54. [54]
    F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].
  55. [55]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
  56. [56]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
  57. [57]
    T. Harrington and M. Spradlin, Cluster Functions and Scattering Amplitudes for Six and Seven Points, JHEP07 (2017) 016 [arXiv:1512.07910] [INSPIRE].
  58. [58]
    J. Drummond, J. Foster and Ö. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
  59. [59]
    J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency beyond MHV, JHEP03 (2019) 086 [arXiv:1810.08149] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  60. [60]
    J. Golden and A.J. Mcleod, Cluster Algebras and the Subalgebra Constructibility of the Seven-Particle Remainder Function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    J. Golden, A.J. McLeod, M. Spradlin and A. Volovich, The Sklyanin Bracket and Cluster Adjacency at All Multiplicity, JHEP03 (2019) 195 [arXiv:1902.11286] [INSPIRE].
  62. [62]
    J. Drummond, J. Foster, Ö. Gürdoğan and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257.MathSciNetzbMATHGoogle Scholar
  64. [64]
    O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta33 (1960) 347.Google Scholar
  65. [65]
    K.E. Cahill and H.P. Stapp, Optical Theorems and Steinmann Relations, Annals Phys.90 (1975) 438 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    S. Caron-Huot, L.J. Dixon, F. Dulat, M. Von Hippel, A.J. McLeod and G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann Relations for Planar \( \mathcal{N} \) = 4 SYM Amplitudes, arXiv:1906.07116 [INSPIRE].
  67. [67]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  68. [68]
    F. Brown, Feynman amplitudes, coaction principle and cosmic Galois group, Commun. Num. Theor. Phys.11 (2017) 453 [arXiv:1512.06409] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  69. [69]
    E. Panzer and O. Schnetz, The Galois coaction on ϕ 4periods, Commun. Num. Theor. Phys.11 (2017) 657 [arXiv:1603.04289] [INSPIRE].
  70. [70]
    O. Schnetz, The Galois coaction on the electron anomalous magnetic moment, Commun. Num. Theor. Phys.12 (2018) 335 [arXiv:1711.05118] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  71. [71]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, \( \mathcal{N} \) = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: The Regge cut contribution, Eur. Phys. J.C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    V.S. Fadin and L.N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at \( \mathcal{N} \) = 4 SUSY, Phys. Lett. B706 (2012) 470 [arXiv:1111.0782] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    L. Lipatov, A. Prygarin and H.J. Schnitzer, The Multi-Regge limit of NMHV Amplitudes in \( \mathcal{N} \) =4 SYM Theory, JHEP01(2013) 068 [arXiv:1205.0186] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP01 (2015) 027 [arXiv:1407.3766] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP04 (2011) 088 [arXiv:1006.2788] [INSPIRE].
  76. [76]
    B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
  77. [77]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
  78. [78]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP08 (2014) 085 [arXiv:1402.3307] [INSPIRE].
  79. [79]
    B. Basso, A. Sever and P. Vieira, Collinear Limit of Scattering Amplitudes at Strong Coupling, Phys. Rev. Lett.113 (2014) 261604 [arXiv:1405.6350] [INSPIRE].CrossRefADSGoogle Scholar
  80. [80]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix IV. Gluons and Fusion, JHEP09 (2014) 149 [arXiv:1407.1736] [INSPIRE].
  81. [81]
    A.V. Belitsky, Nonsinglet pentagons and NMHV amplitudes, Nucl. Phys.B 896 (2015) 493 [arXiv:1407.2853] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  82. [82]
    A.V. Belitsky, Fermionic pentagons and NMHV hexagon, Nucl. Phys.B 894 (2015) 108 [arXiv:1410.2534] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  83. [83]
    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes, JHEP08 (2015) 018 [arXiv:1412.1132] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  84. [84]
    A.V. Belitsky, On factorization of multiparticle pentagons, Nucl. Phys.B 897 (2015) 346 [arXiv:1501.06860] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  85. [85]
    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes II. Form Factors and Data Analysis, JHEP12 (2015) 088 [arXiv:1508.02987] [INSPIRE].
  86. [86]
    B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar \( \mathcal{N} \) = 4 SYM theory at finite coupling, J. Phys.A 49 (2016) 41LT01 [arXiv:1508.03045] [INSPIRE].
  87. [87]
    A.V. Belitsky, Matrix pentagons, Nucl. Phys.B 923 (2017) 588 [arXiv:1607.06555] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  88. [88]
    G. Georgiou, Null Wilson loops with a self-crossing and the Wilson loop/amplitude conjecture, JHEP09 (2009) 021 [arXiv:0904.4675] [INSPIRE].
  89. [89]
    H. Dorn and S. Wuttke, Wilson loop remainder function for null polygons in the limit of self-crossing, JHEP05 (2011) 114 [arXiv:1104.2469] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  90. [90]
    H. Dorn and S. Wuttke, Hexagon Remainder Function in the Limit of Self-Crossing up to three Loops, JHEP04 (2012) 023 [arXiv:1111.6815] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  91. [91]
    L.J. Dixon and I. Esterlis, All orders results for self-crossing Wilson loops mimicking double parton scattering, JHEP07 (2016) 116 [Erratum ibid.08 (2016) 131] [arXiv:1602.02107] [INSPIRE].
  92. [92]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  93. [93]
  94. [94]
    V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett.B 214 (1988) 215 [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    G. Georgiou, E.W.N. Glover and V.V. Khoze, Non-MHV tree amplitudes in gauge theory, JHEP 07 (2004) 048 [hep-th/0407027] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  96. [96]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP09 (2008) 063 [arXiv:0805.0757] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  97. [97]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
  98. [98]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  99. [99]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  100. [100]
    L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
  101. [101]
    F. Brown, Mixed Tate motives over ℤ, Annals Math.175 (2012) 949 [arXiv:1102.1312].CrossRefMathSciNetzbMATHGoogle Scholar
  102. [102]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP09 (2011) 032 [arXiv:0911.4708] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  103. [103]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
  104. [104]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar \( \mathcal{N} \) = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE].
  105. [105]
    M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
  106. [106]
    V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP08 (2016) 152 [arXiv:1606.08807] [INSPIRE].
  107. [107]
    F.C. Brown, Single-valued multiple polylogarithms in one variable, C.R. Acad. Sci. Paris Ser. I338 (2004) 527.CrossRefzbMATHGoogle Scholar
  108. [108]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP10 (2012) 074 [arXiv:1207.0186] [INSPIRE].CrossRefADSGoogle Scholar
  109. [109]
    J.M. Drummond and G. Papathanasiou, Hexagon OPE Resummation and Multi-Regge Kinematics, JHEP02 (2016) 185 [arXiv:1507.08982] [INSPIRE].CrossRefADSGoogle Scholar
  110. [110]
    J. Broedel and M. Sprenger, Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space, JHEP05 (2016) 055 [arXiv:1512.04963] [INSPIRE].
  111. [111]
    B. Basso, Exciting the GKP string at any coupling, Nucl. Phys.B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  112. [112]
    G. Papathanasiou, Hexagon Wilson Loop OPE and Harmonic Polylogarithms, JHEP11 (2013) 150 [arXiv:1310.5735] [INSPIRE].
  113. [113]
    G. Papathanasiou, Evaluating the six-point remainder function near the collinear limit, Int. J. Mod. Phys.A 29 (2014) 1450154 [arXiv:1406.1123] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  114. [114]
  115. [115]
    O. Schnetz, HyperlogProcedures, https://www.math.fau.de/person/oliver-schnetz/.
  116. [116]
    V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP06 (2018) 116 [arXiv:1801.10605] [INSPIRE].
  117. [117]
    J. Ablinger, J. Blumlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  118. [118]
    I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys.B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].
  119. [119]
    A. Sever, Integrability for scattering amplitudes the six point amplitude at all loops, talk at Amplitudes 2015, http://amp15.itp.phys.ethz.ch/talks/Sever.pdf.
  120. [120]
    D. Babusci and G. Dattoli, On evaluation of integrals involving Bessel functions, arXiv:1111.0881.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Simon Caron-Huot
    • 1
  • Lance J. Dixon
    • 2
    • 3
    • 4
  • Falko Dulat
    • 2
  • Matt von Hippel
    • 5
    • 6
  • Andrew J. McLeod
    • 2
    • 3
    • 6
    Email author
  • Georgios Papathanasiou
    • 3
    • 7
  1. 1.Department of PhysicsMcGill UniversityMontréalCanada
  2. 2.SLAC National Accelerator LaboratoryStanford UniversityStanfordU.S.A.
  3. 3.Kavli Institute for Theoretical PhysicsUC Santa BarbaraSanta BarbaraU.S.A.
  4. 4.Institut für Physik and IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  6. 6.Niels Bohr International AcademyCopenhagenDenmark
  7. 7.DESY Theory GroupDESY HamburgHamburgGermany

Personalised recommendations