Rényi entropy at large energy density in 2D CFT

  • Wu-zhong Guo
  • Feng-Li LinEmail author
  • Jiaju Zhang
Open Access
Regular Article - Theoretical Physics


We investigate the Rényi entropy and entanglement entropy of an interval with an arbitrary length in the canonical ensemble, microcanonical ensemble and primary excited states at large energy density in the thermodynamic limit of a two-dimensional large central charge c conformal field theory. As a generalization of the recent work [17], the main purpose of the paper is to see whether one can distinguish these various large energy density states by the Rényi entropies of an interval at different size scales, namely, short, medium and long. Collecting earlier results and performing new calculations in order to compare with and fill gaps in the literature, we give a more complete and detailed analysis of the problem. Especially, we find some corrections to the recent results for the holographic Rényi entropy of a medium size interval, which enlarge the validity region of the results. Based on the Rényi entropies of the three interval scales, we find that Rényi entropy cannot distinguish the canonical and microcanonical ensemble states for a short interval, but can do the job for both medium and long intervals. At the leading order of large c the entanglement entropy cannot distinguish the canonical and microcanonical ensemble states for all interval lengths, but the difference of entanglement entropy for a long interval between the two states would appear with 1/c corrections. We also discuss Rényi entropy and entanglement entropy differences between the thermal states and primary excited state. Overall, our work provide an up-to-date picture of distinguishing different thermal or primary states at various length scales of the subsystem.


AdS-CFT Correspondence Conformal Field Theory Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev.A 43 (1991) 2046.Google Scholar
  2. [2]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev.E 50 (1994) 888.Google Scholar
  3. [3]
    M. Srednicki, Thermal fluctuations in quantized chaotic systems, J. Phys.A 29 (1996) L75 [chao-dyn/9511001] [INSPIRE].
  4. [4]
    M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature452 (2008) 854 [arXiv:0708.1324].ADSCrossRefGoogle Scholar
  5. [5]
    L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys.65 (2016) 239 [arXiv:1509.06411].ADSCrossRefGoogle Scholar
  6. [6]
    N. Lashkari, A. Dymarsky and H. Liu, Eigenstate thermalization hypothesis in conformal field theory, J. Stat. Mech.1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Dymarsky, N. Lashkari and H. Liu, Subsystem ETH, Phys. Rev.E 97 (2018) 012140 [arXiv:1611.08764] [INSPIRE].
  8. [8]
    N. Lashkari, A. Dymarsky and H. Liu, Universality of quantum information in chaotic CFTs, JHEP03 (2018) 070 [arXiv:1710.10458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
  10. [10]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev.D 14 (1976) 2460 [INSPIRE].
  11. [11]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  13. [13]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    T.-C. Lu and T. Grover, Renyi entropy of chaotic eigenstates, Phys. Rev.E 99 (2019) 032111 [arXiv:1709.08784] [INSPIRE].
  15. [15]
    T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP06 (2018) 123 [arXiv:1712.03464] [INSPIRE].
  16. [16]
    W.-Z. Guo, F.-L. Lin and J. Zhang, Distinguishing black hole microstates using Holevo information, Phys. Rev. Lett.121 (2018) 251603 [arXiv:1808.02873] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X. Dong, Holographic Rényi entropy at high energy density, Phys. Rev. Lett.122 (2019) 041602 [arXiv:1811.04081] [INSPIRE].
  18. [18]
    J.R. Garrison and T. Grover, Does a single eigenstate encode the full Hamiltonian?, Phys. Rev.X 8 (2018) 021026 [arXiv:1503.00729] [INSPIRE].
  19. [19]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP11 (2016) 028 [arXiv:1607.07506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    X. Dong, The gravity dual of Rényi entropy, Nature Commun.7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F.-L. Lin, H. Wang and J.-j. Zhang, Thermality and excited state Rényi entropy in two-dimensional CFT, JHEP11 (2016) 116 [arXiv:1610.01362] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. He, F.-L. Lin and J.-j. Zhang, Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT, JHEP08 (2017) 126 [arXiv:1703.08724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S. He, F.-L. Lin and J.-j. Zhang, Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis, JHEP12 (2017) 073 [arXiv:1708.05090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
  29. [29]
    B. Chen, Z. Li and J.-j. Zhang, Corrections to holographic entanglement plateau, JHEP09 (2017) 151 [arXiv:1707.07354] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, J. Statist. Phys.130 (2008) 129 [arXiv:0706.3384] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev.D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
  32. [32]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech.1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    M.A. Rajabpour and F. Gliozzi, Entanglement entropy of two disjoint intervals from fusion algebra of twist fields, J. Stat. Mech.1202 (2012) P02016 [arXiv:1112.1225] [INSPIRE].
  34. [34]
    B. Chen and J.-J. Zhang, On short interval expansion of Rényi entropy, JHEP11 (2013) 164 [arXiv:1309.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Chen, J.-B. Wu and J.-j. Zhang, Short interval expansion of Rényi entropy on torus, JHEP08 (2016) 130 [arXiv:1606.05444] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Chen and J.-q. Wu, Universal relation between thermal entropy and entanglement entropy in conformal field theories, Phys. Rev.D 91 (2015) 086012 [arXiv:1412.0761] [INSPIRE].
  37. [37]
    B. Chen and J.-q. Wu, Holographic calculation for large interval Rényi entropy at high temperature, Phys. Rev.D 92 (2015) 106001 [arXiv:1506.03206] [INSPIRE].
  38. [38]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  39. [39]
    T. Faulkner, The entanglement Rényi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  40. [40]
    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP09 (2013) 109 [arXiv:1306.4682] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  41. [41]
    B. Chen, J. Long and J.-j. Zhang, Holographic Rényi entropy for CFT with W symmetry, JHEP04 (2014) 041 [arXiv:1312.5510] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS 2/CF T 1, Phys. Rev.D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].
  43. [43]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP08 (2013) 060 [arXiv:1305.3182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP08 (2013) 092 [arXiv:1306.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Sasaki and I. Yamanaka, Virasoro algebra, vertex operators, quantum Sine-Gordon and solvable quantum field theories, Adv. Stud. Pure Math.16 (1988) 271 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys.177 (1996) 381 [hep-th/9412229] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2d CFT: heavy states and local quenches, JHEP02 (2015) 171 [arXiv:1410.1392] [INSPIRE].
  48. [48]
    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum entanglement of localized excited states at finite temperature, JHEP01 (2015) 102 [arXiv:1410.2287] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    W.-Z. Guo, F.-L. Lin and J. Zhang, Note on ETH of descendant states in 2D CFT, JHEP01 (2019) 152 [arXiv:1810.01258] [INSPIRE].
  50. [50]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement temperature and entanglement entropy of excited states, JHEP12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech.1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  52. [52]
    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, 10th anniversary ed., Cambridge University Press, Cambridge, U.K. (2010).Google Scholar
  53. [53]
    W.-Z. Guo, F.-L. Lin and J. Zhang, Nongeometric states in a holographic conformal field theory, Phys. Rev.D 99 (2019) 106001 [arXiv:1806.07595] [INSPIRE].
  54. [54]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett.98 (2007) 050405 [cond-mat/0604476].
  55. [55]
    P. Basu, D. Das, S. Datta and S. Pal, Thermality of eigenstates in conformal field theories, Phys. Rev.E 96 (2017) 022149 [arXiv:1705.03001] [INSPIRE].
  56. [56]
    A. Dymarsky and K. Pavlenko, Generalized Gibbs ensemble of 2d CFTs at large central charge in the thermodynamic limit, JHEP01 (2019) 098 [arXiv:1810.11025] [INSPIRE].
  57. [57]
    A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Thermal correlation functions of KdV charges in 2D CFT, JHEP02 (2019) 044 [arXiv:1810.11053] [INSPIRE].
  58. [58]
    A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Generalized Gibbs ensemble and the statistics of KdV charges in 2D CFT, JHEP03 (2019) 075 [arXiv:1810.11054] [INSPIRE].
  59. [59]
    A. Dymarsky and K. Pavlenko, Exact generalized partition function of 2D CFTs at large central charge, JHEP05 (2019) 077 [arXiv:1812.05108] [INSPIRE].
  60. [60]
    E.M. Brehm and D. Das, On KdV characters in large c CFTs, arXiv:1901.10354 [INSPIRE].
  61. [61]
    A. Dymarsky and K. Pavlenko, Generalized eigenstate thermalization in 2d CFTs, arXiv:1903.03559 [INSPIRE].
  62. [62]
    S. Datta, P. Kraus and B. Michel, Typicality and thermality in 2d CFT, arXiv:1904.00668 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics Division, National Center for Theoretical SciencesNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  3. 3.SISSA and INFN — Sezione di TriesteTriesteItaly

Personalised recommendations