Advertisement

Electroweak baryogenesis from temperature-varying couplings

  • Sebastian A. R. Ellis
  • Seyda IpekEmail author
  • Graham White
Open Access
Regular Article - Theoretical Physics

Abstract

The fundamental couplings of the Standard Model are known to vary as a function of energy scale through the Renormalisation Group (RG), and have been measured at the electroweak scale at colliders. However, the variation of the couplings as a function of temperature need not be the same, raising the possibility that couplings in the early universe were not at the values predicted by RG evolution. We study how such temperature-variance of fundamental gauge couplings can aid the production of a baryon asymmetry in the universe through electroweak baryogenesis. We do so in the context of the Standard Model augmented by higher-dimensional operators up to dimension 6.

Keywords

Beyond Standard Model CP violation Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  2. [2]
    S. Riemer-Sørensen and E.S. Jenssen, Nucleosynthesis predictions and high-precision deuterium measurements, Universe3 (2017) 44 [arXiv:1705.03653] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.D. Sakharov, Violation of CP invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz.5 (1967) 32 [INSPIRE].
  4. [4]
    K. Fuyuto, J. Hisano and E. Senaha, Toward verification of electroweak baryogenesis by electric dipole moments, Phys. Lett.B 755 (2016) 491 [arXiv:1510.04485] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Akula, C. Balázs, L. Dunn and G. White, Electroweak baryogenesis in the3-invariant NMSSM, JHEP11 (2017) 051 [arXiv:1706.09898] [INSPIRE].
  6. [6]
    C. Balázs, G. White and J. Yue, Effective field theory, electric dipole moments and electroweak baryogenesis, JHEP03 (2017) 030 [arXiv:1612.01270] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak baryogenesis and the standard model effective field theory, JHEP01 (2018) 089 [arXiv:1710.04061] [INSPIRE].zbMATHGoogle Scholar
  8. [8]
    M.J. Ramsey-Musolf, P. Winslow and G. White, Color breaking baryogenesis, Phys. Rev.D 97 (2018) 123509 [arXiv:1708.07511] [INSPIRE].
  9. [9]
    M. Carena, M. Quirós and Y. Zhang, Electroweak baryogenesis from dark-sector CP-violation, Phys. Rev. Lett.122 (2019) 201802 [arXiv:1811.09719] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Modak and E. Senaha, Electroweak baryogenesis via bottom transport, Phys. Rev.D 99 (2019) 115022 [arXiv:1811.08088] [INSPIRE].
  11. [11]
    L. Niemi et al., Electroweak phase transition in the ΣSMI: dimensional reduction, arXiv:1802.10500 [INSPIRE].
  12. [12]
    C.-W. Chiang, M.J. Ramsey-Musolf and E. Senaha, Standard model with a complex scalar singlet: cosmological implications and theoretical considerations, Phys. Rev.D 97 (2018) 015005 [arXiv:1707.09960] [INSPIRE].
  13. [13]
    A.V. Kotwal, M.J. Ramsey-Musolf, J.M. No and P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier, Phys. Rev.D 94 (2016) 035022 [arXiv:1605.06123] [INSPIRE].
  14. [14]
    S. Inoue, G. Ovanesyan and M.J. Ramsey-Musolf, Two-step electroweak baryogenesis, Phys. Rev.D 93 (2016) 015013 [arXiv:1508.05404] [INSPIRE].
  15. [15]
    A. Katz, M. Perelstein, M.J. Ramsey-Musolf and P. Winslow, Stop-catalyzed baryogenesis beyond the MSSM, Phys. Rev.D 92 (2015) 095019 [arXiv:1509.02934] [INSPIRE].
  16. [16]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev.D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].
  17. [17]
    V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev.D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
  18. [18]
    A. Beniwal et al., Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP08 (2017) 108 [arXiv:1702.06124] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Kozaczuk, S. Profumo, L.S. Haskins and C.L. Wainwright, Cosmological phase transitions and their properties in the NMSSM, JHEP01 (2015) 144 [arXiv:1407.4134] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    J.M. Cline and K. Kainulainen, Improved electroweak phase transition with subdominant inert doublet dark matter, Phys. Rev.D 87 (2013) 071701 [arXiv:1302.2614] [INSPIRE].
  21. [21]
    D. Borah and J.M. Cline, Inert doublet dark matter with strong electroweak phase transition, Phys. Rev.D 86 (2012) 055001 [arXiv:1204.4722] [INSPIRE].
  22. [22]
    J.M. Cline, G. Laporte, H. Yamashita and S. Kraml, Electroweak phase transition and LHC signatures in the singlet Majoron model, JHEP07 (2009) 040 [arXiv:0905.2559] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.M. Cline, M. Jarvinen and F. Sannino, The electroweak phase transition in nearly conformal technicolor, Phys. Rev.D 78 (2008) 075027 [arXiv:0808.1512] [INSPIRE].
  24. [24]
    M. Chala, M. Ramos and M. Spannowsky, Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff, Eur. Phys. J.C 79 (2019) 156 [arXiv:1812.01901] [INSPIRE].
  25. [25]
    R. Zhou, W. Cheng, X. Deng, L. Bian and Y. Wu, Electroweak phase transition and Higgs phenomenology in the Georgi-Machacek model, JHEP01 (2019) 216 [arXiv:1812.06217] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Alves, T. Ghosh, H.-K. Guo, K. Sinha and D. Vagie, Collider and gravitational wave complementarity in exploring the singlet extension of the Standard Model, JHEP04 (2019) 052 [arXiv:1812.09333] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G. Kurup and M. Perelstein, Dynamics of electroweak phase transition in singlet-scalar extension of the Standard Model, Phys. Rev.D 96 (2017) 015036 [arXiv:1704.03381] [INSPIRE].
  28. [28]
    D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP11 (2014) 127 [arXiv:1409.0005] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N.F. Bell et al., Electroweak baryogenesis with vector-like leptons and scalar singlets, arXiv:1903.11255 [INSPIRE].
  30. [30]
    J. De Vries, M. Postma and J. van de Vis, The role of leptons in electroweak baryogenesis, JHEP04 (2019) 024 [arXiv:1811.11104] [INSPIRE].MathSciNetGoogle Scholar
  31. [31]
    C.-Y. Chen, H.-L. Li and M. Ramsey-Musolf, CP-violation in the two Higgs doublet model: from the LHC to EDMs, Phys. Rev.D 97 (2018) 015020 [arXiv:1708.00435] [INSPIRE].
  32. [32]
    H.-K. Guo et al., Lepton-flavored electroweak baryogenesis, Phys. Rev.D 96 (2017) 115034 [arXiv:1609.09849] [INSPIRE].
  33. [33]
    W. Chao and M.J. Ramsey-Musolf, Catalysis of electroweak baryogenesis via fermionic Higgs portal dark matter, arXiv:1503.00028 [INSPIRE].
  34. [34]
    J.M. Cline, K. Kainulainen and D. Tucker-Smith, Electroweak baryogenesis from a dark sector, Phys. Rev.D 95 (2017) 115006 [arXiv:1702.08909] [INSPIRE].
  35. [35]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP01 (2013) 012 [arXiv:1210.4196] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    L. Bian, H.-K. Guo and J. Shu, Gravitational waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM, Chin. Phys.C 42 (2018) 093106 [arXiv:1704.02488] [INSPIRE].
  38. [38]
    M. Carena, Z. Liu and M. Riembau, Probing the electroweak phase transition via enhanced di-Higgs boson production, Phys. Rev.D 97 (2018) 095032 [arXiv:1801.00794] [INSPIRE].
  39. [39]
    J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett.B 417 (1998) 79 [Erratum ibid.B 448 (1999) 321] [hep-ph/9708393] [INSPIRE].
  40. [40]
    B. Grzadkowski and D. Huang, Spontaneous CP -violating electroweak baryogenesis and dark matter from a complex singlet scalar, JHEP08 (2018) 135 [arXiv:1807.06987] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys.71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
  42. [42]
    T. Konstandin, Quantum transport and electroweak baryogenesis, Phys. Usp.56 (2013) 747 [arXiv:1302.6713].
  43. [43]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys.14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G.A. White, A pedagogical introduction to electroweak baryogenesis, IOP Concise Physics, Morgan & Claypool, U.K. (2016).Google Scholar
  45. [45]
    M. Berkooz, Y. Nir and T. Volansky, Baryogenesis from the Kobayashi-Maskawa phase, Phys. Rev. Lett.93 (2004) 051301 [hep-ph/0401012] [INSPIRE].
  46. [46]
    I. Baldes, T. Konstandin and G. Servant, Flavor cosmology: dynamical yukawas in the Froggatt-Nielsen mechanism, JHEP12 (2016) 073 [arXiv:1608.03254] [INSPIRE].ADSGoogle Scholar
  47. [47]
    I. Baldes, T. Konstandin and G. Servant, A first-order electroweak phase transition from varying Yukawas, Phys. Lett.B 786 (2018) 373 [arXiv:1604.04526] [INSPIRE].ADSGoogle Scholar
  48. [48]
    B. von Harling and G. Servant, Cosmological evolution of Yukawa couplings: the 5D perspective, JHEP05 (2017) 077 [arXiv:1612.02447] [INSPIRE].
  49. [49]
    S. Bruggisser, T. Konstandin and G. Servant, CP-violation for Electroweak Baryogenesis from Dynamical CKM Matrix, JCAP11 (2017) 034 [arXiv:1706.08534] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Ipek and T.M.P. Tait, Early cosmological period of QCD confinement, Phys. Rev. Lett.122 (2019) 112001 [arXiv:1811.00559] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev.D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
  52. [52]
    C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP04 (2008) 029 [arXiv:0711.2511] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Chala, C. Krause and G. Nardini, Signals of the electroweak phase transition at colliders and gravitational wave observatories, JHEP07 (2018) 062 [arXiv:1802.02168] [INSPIRE].ADSGoogle Scholar
  54. [54]
    W. Altmannshofer, R. Harnik and J. Zupan, Low energy probes of PeV scale sfermions, JHEP11 (2013) 202 [arXiv:1308.3653] [INSPIRE].ADSGoogle Scholar
  55. [55]
    G. Isidori, Flavor physics and CP-violation, in the proceedings of the 2012 European School of High-Energy Physics (ESHEP 2012), June 6-19, La Pommeraye, Anjou, France (2012), arXiv:1302.0661 [INSPIRE].
  56. [56]
    P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev.D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].
  57. [57]
    K. Kainulainen et al., On the validity of perturbative studies of the electroweak phase transition in the two Higgs doublet model, JHEP06 (2019) 075 [arXiv:1904.01329] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev.D 45 (1992) 4695 [Erratum ibid.D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
  59. [59]
    P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: beyond leading-order, Phys. Rev.D 47 (1993) 3546 [Erratum ibid.D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].
  60. [60]
    D. Curtin, P. Meade and H. Ramani, Thermal resummation and phase transitions, Eur. Phys. J.C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].
  61. [61]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP02 (2018) 178 [arXiv:1711.03978] [INSPIRE].ADSGoogle Scholar
  62. [62]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature562 (2018) 355 [INSPIRE].
  63. [63]
    D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev.D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
  64. [64]
    G.D. Moore and M. Tassler, The sphaleron rate in SU(N ) gauge theory, JHEP02 (2011) 105 [arXiv:1011.1167] [INSPIRE].
  65. [65]
    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev.D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].
  66. [66]
    V. Cirigliano, C. Lee and S. Tulin, Resonant flavor oscillations in electroweak baryogenesis, Phys. Rev.D 84 (2011) 056006 [arXiv:1106.0747] [INSPIRE].
  67. [67]
    M. Carena et al., Supersymmetric CP-violating currents and electroweak baryogenesis, Nucl. Phys.B 599 (2001) 158 [hep-ph/0011055] [INSPIRE].
  68. [68]
    J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP07 (2000) 018 [hep-ph/0006119] [INSPIRE].zbMATHGoogle Scholar
  69. [69]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP07 (2011) 029 [arXiv:1101.4665] [INSPIRE].ADSzbMATHGoogle Scholar
  70. [70]
    L. Carson and L.D. McLerran, Approximate computation of the small fluctuation determinant around a sphaleron, Phys. Rev.D 41 (1990) 647 [INSPIRE].
  71. [71]
    L. Carson, X. Li, L.D. McLerran and R.-T. Wang, Exact computation of the small fluctuation determinant around a sphaleron, Phys. Rev.D 42 (1990) 2127 [INSPIRE].
  72. [72]
    F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.D 30 (1984) 2212 [INSPIRE].
  73. [73]
    X. Gan, A.J. Long and L.-T. Wang, Electroweak sphaleron with dimension-six operators, Phys. Rev.D 96 (2017) 115018 [arXiv:1708.03061] [INSPIRE].
  74. [74]
    J. Lim et al., Laser cooled YbF molecules for measuring the electrons electric dipole moment, Phys. Rev. Lett.120 (2018) 123201 [arXiv:1712.02868] [INSPIRE].
  75. [75]
    A.C. Vutha, M. Horbatsch and E.A. Hessels, Oriented polar molecules in a solid inert-gas matrix: a proposed method for measuring the electric dipole moment of the electron, arXiv:1710.08785 [INSPIRE].
  76. [76]
    I. Kozyryev and N.R. Hutzler, Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules, Phys. Rev. Lett.119 (2017) 133002 [arXiv:1705.11020] [INSPIRE].
  77. [77]
    F.P. Huang et al., Testing the electroweak phase transition and electroweak baryogenesis at the LHC and a circular electron-positron collider, Phys. Rev.D 93 (2016) 103515 [arXiv:1511.03969] [INSPIRE].
  78. [78]
    Q.-H. Cao, F.P. Huang, K.-P. Xie and X. Zhang, Testing the electroweak phase transition in scalar extension models at lepton colliders, Chin. Phys.C 42 (2018) 023103 [arXiv:1708.04737] [INSPIRE].
  79. [79]
    M.S. Turner, Coherent scalar field oscillations in an expanding universe, Phys. Rev.D 28 (1983) 1243 [INSPIRE].
  80. [80]
    D.B. Kaplan and M.B. Wise, Couplings of a light dilaton and violations of the equivalence principle, JHEP08 (2000) 037 [hep-ph/0008116] [INSPIRE].
  81. [81]
    T. Damour and J.F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev.D 82 (2010) 084033 [arXiv:1007.2792] [INSPIRE].
  82. [82]
    T. Damour and J.F. Donoghue, Phenomenology of the equivalence principle with light scalars, Class. Quant. Grav.27 (2010) 202001 [arXiv:1007.2790] [INSPIRE].ADSzbMATHGoogle Scholar
  83. [83]
    J.A. Frieman, C.T. Hill, A. Stebbins and I. Waga, Cosmology with ultralight pseudo Nambu-Goldstone bosons, Phys. Rev. Lett.75 (1995) 2077 [astro-ph/9505060] [INSPIRE].ADSGoogle Scholar
  84. [84]
    B. Bertotti, L. Iess and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature425 (2003) 374 [INSPIRE].ADSGoogle Scholar
  85. [85]
    C.J. A.P. Martins, The status of varying constants: a review of the physics, searches and implications, arXiv:1709.02923 [INSPIRE].
  86. [86]
    J.K. Webb et al., Indications of a spatial variation of the fine structure constant, Phys. Rev. Lett.107 (2011) 191101 [arXiv:1008.3907] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Damour and F. Dyson, The Oklo bound on the time variation of the fine structure constant revisited, Nucl. Phys.B 480 (1996) 37 [hep-ph/9606486] [INSPIRE].
  88. [88]
    A. Coc et al., Coupled variations of fundamental couplings and primordial nucleosynthesis, Phys. Rev.D 76 (2007) 023511 [astro-ph/0610733] [INSPIRE].
  89. [89]
    S. Schlamminger et al., Test of the equivalence principle using a rotating torsion balance, Phys. Rev. Lett.100 (2008) 041101 [arXiv:0712.0607] [INSPIRE].
  90. [90]
    J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett.93 (2004) 171104 [astro-ph/0309300] [INSPIRE].
  91. [91]
    N. Blinov, S.A.R. Ellis and A. Hook, Consequences of fine-tuning for fifth force searches, JHEP11 (2018) 029 [arXiv:1807.11508] [INSPIRE].ADSzbMATHGoogle Scholar
  92. [92]
    A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP12 (2016) 101 [arXiv:1607.01786] [INSPIRE].ADSGoogle Scholar
  93. [93]
    R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions using precision cosmological data, Phys. Rev.D 91 (2015) 103512 [arXiv:1410.2896] [INSPIRE].
  94. [94]
    K. Coble, S. Dodelson and J.A. Frieman, Dynamical Lambda models of structure formation, Phys. Rev.D 55 (1997) 1851 [astro-ph/9608122] [INSPIRE].
  95. [95]
    W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett.85 (2000) 1158 [astro-ph/0003365] [INSPIRE].
  96. [96]
    L. Amendola and R. Barbieri, Dark matter from an ultra-light pseudo-Goldsone-boson, Phys. Lett.B 642 (2006) 192 [hep-ph/0509257] [INSPIRE].
  97. [97]
    D.S.M. Alves, J. Galloway, J.T. Ruderman and J.R. Walsh, Running electroweak couplings as a probe of new physics, JHEP02 (2015) 007 [arXiv:1410.6810] [INSPIRE].ADSGoogle Scholar
  98. [98]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s}= 13 \)TeV with the ATLAS detector, Phys. Rev. Lett.121 (2018) 211801 [arXiv:1808.02343] [INSPIRE].
  99. [99]
    ATLAS collaboration, Search for single production of vector-like quarks decaying into W b in pp collisions at \( \sqrt{s}=13 \)TeV with the ATLAS detector, JHEP05 (2019) 164 [arXiv:1812.07343] [INSPIRE].
  100. [100]
    CMS collaboration, Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at \( \sqrt{s}=13 \)TeV, Eur. Phys. J.C 79 (2019) 90 [arXiv:1809.08597] [INSPIRE].
  101. [101]
    CMS collaboration, Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at \( \sqrt{s}=13 \)TeV, Eur. Phys. J.C 79 (2019) 364 [arXiv:1812.09768] [INSPIRE].
  102. [102]
    M.J. Baker and J. Kopp, Dark matter decay between phase transitions at the weak Scale, Phys. Rev. Lett.119 (2017) 061801 [arXiv:1608.07578] [INSPIRE].
  103. [103]
    M.J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Dynamic freeze-in: impact of thermal masses and cosmological phase transitions on dark matter production, JHEP03 (2018) 114 [arXiv:1712.03962] [INSPIRE].ADSGoogle Scholar
  104. [104]
    S. Ipek and T.M. Tait, Multiple phase transitions and early QCD confinement, work in progress.Google Scholar
  105. [105]
    U. Danielsson, R. Enberg, G. Ingelman and T. Mandal, Varying gauge couplings and collider phenomenology, arXiv:1905.11314 [INSPIRE].
  106. [106]
    A. Mazumdar and G. White, Cosmic phase transitions: their applications and experimental signatures, Rept. Prog. Phys.82 (2019) 076901 [arXiv:1811.01948] [INSPIRE].
  107. [107]
    C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav.35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  108. [108]
    S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav.28 (2011) 094011 [INSPIRE].
  109. [109]
    D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond.A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].
  110. [110]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev.D 96 (2017) 103520 [arXiv:1704.05871] [INSPIRE].
  111. [111]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP05 (2009) 009 [arXiv:0903.4099] [INSPIRE].ADSGoogle Scholar
  112. [112]
    D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP05 (2017) 025 [arXiv:1703.08215] [INSPIRE].ADSMathSciNetGoogle Scholar
  113. [113]
    D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP08 (2018) 203 [arXiv:1806.02332] [INSPIRE].ADSGoogle Scholar
  114. [114]
    J. Ellis, M. Lewicki and J.M. No, On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal, arXiv:1809.08242 [INSPIRE].
  115. [115]
    J. Ellis, M. Lewicki, J.M. No and V. Vaskonen, Gravitational wave energy budget in strongly supercooled phase transitions, JCAP06 (2019) 024 [arXiv:1903.09642] [INSPIRE].ADSGoogle Scholar
  116. [116]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett.112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].
  117. [117]
    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP06 (2010) 028 [arXiv:1004.4187] [INSPIRE].ADSGoogle Scholar
  118. [118]
    S. Akula, C. Balázs and G.A. White, Semi-analytic techniques for calculating bubble wall profiles, Eur. Phys. J.C 76 (2016) 681 [arXiv:1608.00008] [INSPIRE].
  119. [119]
    P. Athron et al., BubbleProfiler: finding the field profile and action for cosmological phase transitions, arXiv:1901.03714 [INSPIRE].
  120. [120]
    L. Delle Rose, C. Marzo and A. Urbano, On the fate of the Standard Model at finite temperature, JHEP05 (2016) 050 [arXiv:1507.06912] [INSPIRE].Google Scholar
  121. [121]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: thin wall regime, Phys. Rev.D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].
  122. [122]
    T. Liu, M.J. Ramsey-Musolf and J. Shu, Electroweak beautygenesis: from bs CP-violation to the cosmic baryon asymmetry, Phys. Rev. Lett.108 (2012) 221301 [arXiv:1109.4145] [INSPIRE].
  123. [123]
    H.A. Weldon, Structure of the quark propagator at high temperature, Phys. Rev.D 61 (2000) 036003 [hep-ph/9908204] [INSPIRE].
  124. [124]
    S. Tulin and P. Winslow, Anomalous B meson mixing and baryogenesis, Phys. Rev.D 84 (2011) 034013 [arXiv:1105.2848] [INSPIRE].
  125. [125]
    G.A. White, General analytic methods for solving coupled transport equations: From cosmology to beyond, Phys. Rev.D 93 (2016) 043504 [arXiv:1510.03901] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  3. 3.TRIUMF Theory GroupVancouverCanada

Personalised recommendations