Dark radiation and superheavy dark matter from black hole domination

  • Dan Hooper
  • Gordan Krnjaic
  • Samuel D. McDermottEmail author
Open Access
Regular Article - Theoretical Physics


If even a relatively small number of black holes were created in the early universe, they will constitute an increasingly large fraction of the total energy density as space expands. It is thus well-motivated to consider scenarios in which the early universe included an era in which primordial black holes dominated the total energy density. Within this context, we consider Hawking radiation as a mechanism to produce both dark radiation and dark matter. If the early universe included a black hole dominated era, we find that Hawking radiation will produce dark radiation at a level ΔNeff ∼ 0.03 − 0.2 for each light and decoupled species of spin 0, 1/2, or 1. This range is well suited to relax the tension between late and early-time Hubble determinations, and is within the reach of upcoming CMB experiments. The dark matter could also originate as Hawking radiation in a black hole dominated early universe, although such dark matter candidates must be very heavy (mDM ≳ 1011 GeV) if they are to avoid exceeding the measured abundance.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B.J. Carr and S.W. Hawking, Black holes in the early universe, Mon. Not. Roy. Astron. Soc.168 (1974) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. García-Bellido, A.D. Linde and D. Wands, Density perturbations and black hole formation in hybrid inflation, Phys. Rev.D 54 (1996) 6040 [astro-ph/9605094] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Kawasaki, A. Kusenko, Y. Tada and T.T. Yanagida, Primordial black holes as dark matter in supergravity inflation models, Phys. Rev.D 94 (2016) 083523 [arXiv:1606.07631] [INSPIRE].
  4. [4]
    S. Clesse and J. García-Bellido, The clustering of massive primordial black holes as dark matter: measuring their mass distribution with advanced LIGO, Phys. Dark Univ.15 (2017) 142 [arXiv:1603.05234] [INSPIRE].
  5. [5]
    K. Kannike, L. Marzola, M. Raidal and H. Veermäe, Single field double inflation and primordial black holes, JCAP09 (2017) 020 [arXiv:1705.06225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Kawasaki, N. Sugiyama and T. Yanagida, Primordial black hole formation in a double inflation model in supergravity, Phys. Rev.D 57 (1998) 6050 [hep-ph/9710259] [INSPIRE].
  7. [7]
    R.-G. Cai, T.-B. Liu and S.-J. Wang, Sensitivity of primordial black hole abundance on the reheating phase, Phys. Rev.D 98 (2018) 043538 [arXiv:1806.05390] [INSPIRE].
  8. [8]
    C.-M. Yoo, T. Harada, J. Garriga and K. Kohri, Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold, PTEP2018 (2018) 123E01 [arXiv:1805.03946] [INSPIRE].
  9. [9]
    S. Young and C.T. Byrnes, Signatures of non-Gaussianity in the isocurvature modes of primordial black hole dark matter, JCAP04 (2015) 034 [arXiv:1503.01505] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Clesse and J. García-Bellido, Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies, Phys. Rev.D 92 (2015) 023524 [arXiv:1501.07565] [INSPIRE].
  11. [11]
    S.D.H. Hsu, Black holes from extended inflation, Phys. Lett.B 251 (1990) 343 [INSPIRE].
  12. [12]
    D. La and P.J. Steinhardt, Extended inflationary cosmology, Phys. Rev. Lett.62 (1989) 376 [Erratum ibid.62 (1989) 1066] [INSPIRE].
  13. [13]
    D. La and P.J. Steinhardt, Bubble percolation in extended inflationary models, Phys. Lett.B 220 (1989) 375 [INSPIRE].
  14. [14]
    D. La, P.J. Steinhardt and E.W. Bertschinger, Prescription for successful extended inflation, Phys. Lett.B 231 (1989) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E.J. Weinberg, Some problems with extended inflation, Phys. Rev.D 40 (1989) 3950 [INSPIRE].
  16. [16]
    P.J. Steinhardt and F.S. Accetta, Hyperextended inflation, Phys. Rev. Lett.64 (1990) 2740 [INSPIRE].
  17. [17]
    F.S. Accetta and J.J. Trester, Extended inflation with induced gravity, Phys. Rev.D 39 (1989) 2854 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Holman, E.W. Kolb and Y. Wang, Gravitational couplings of the inflaton in extended inflation, Phys. Rev. Lett.65 (1990) 17 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble collisions in the very early universe, Phys. Rev.D 26 (1982) 2681 [INSPIRE].
  20. [20]
    M. Yu. Khlopov and A.G. Polnarev, Primordial black holes as a cosmological test of grand unification, Phys. Lett.B 97 (1980) 383 [INSPIRE].
  21. [21]
    J.L.G. Sobrinho, P. Augusto and A.L. Gonçalves, New thresholds for primordial black hole formation during the QCD phase transition, Mon. Not. Roy. Astron. Soc.463 (2016) 2348 [arXiv:1609.01205] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.G. Rubin, M. Yu. Khlopov and A.S. Sakharov, Primordial black holes from nonequilibrium second order phase transition, Grav. Cosmol.6 (2000) 51 [hep-ph/0005271] [INSPIRE].
  23. [23]
    K. Jedamzik and J.C. Niemeyer, Primordial black hole formation during first order phase transitions, Phys. Rev.D 59 (1999) 124014 [astro-ph/9901293] [INSPIRE].
  24. [24]
    C.T. Byrnes, M. Hindmarsh, S. Young and M.R.S. Hawkins, Primordial black holes with an accurate QCD equation of state, JCAP08 (2018) 041 [arXiv:1801.06138] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter and density perturbation from primordial black holes, Phys. Rev.D 89 (2014) 103501 [arXiv:1401.1909] [INSPIRE].
  26. [26]
    O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black hole genesis of dark matter, JCAP04 (2018) 009 [arXiv:1712.07664] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Morrison, S. Profumo and Y. Yu, Melanopogenesis: dark matter of (almost) any mass and baryonic matter from the evaporation of primordial black holes weighing a ton (or less), JCAP05 (2019) 005 [arXiv:1812.10606] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, Large Magellanic cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM, Astrophys. J.876 (2019) 85 [arXiv:1903.07603] [INSPIRE].
  29. [29]
    A.G. Riess et al., Milky way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant, Astrophys. J.861 (2018) 126 [arXiv:1804.10655] [INSPIRE].
  30. [30]
    A.G. Riess et al., A 2.4% determination of the local value of the Hubble constant, Astrophys. J.826 (2016) 56 [arXiv:1604.01424] [INSPIRE].
  31. [31]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  32. [32]
    J.L. Bernal, L. Verde and A.G. Riess, The trouble with H 0, JCAP10 (2016) 019 [arXiv:1607.05617] [INSPIRE].
  33. [33]
    K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W.L.K. Wu, Sounds discordant: classical distance ladder & ΛCDM-based determinations of the cosmological sound horizon, Astrophys. J.874 (2019) 4 [arXiv:1811.00537] [INSPIRE].
  34. [34]
    S. Weinberg, Goldstone bosons as fractional cosmic neutrinos, Phys. Rev. Lett.110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Shakya and J.D. Wells, Sterile neutrino dark matter with supersymmetry, Phys. Rev.D 96 (2017) 031702 [arXiv:1611.01517] [INSPIRE].
  36. [36]
    A. Berlin and N. Blinov, Thermal neutrino portal to sub-MeV dark matter, Phys. Rev.D 99 (2019) 095030 [arXiv:1807.04282] [INSPIRE].
  37. [37]
    F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal, Hot axions and the H 0tension, JCAP11 (2018) 014 [arXiv:1808.07430] [INSPIRE].
  38. [38]
    C. Dessert, C. Kilic, C. Trendafilova and Y. Tsai, Addressing astrophysical and cosmological problems with secretly asymmetric dark matter, Phys. Rev.D 100 (2019) 015029 [arXiv:1811.05534] [INSPIRE].
  39. [39]
    M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with a very light L μ-L τgauge boson, JHEP03 (2019) 071 [arXiv:1901.02010] [INSPIRE].
  40. [40]
    V. Poulin, T.L. Smith, T. Karwal and M. Kamionkowski, Early dark energy can resolve the Hubble tension, Phys. Rev. Lett.122 (2019) 221301 [arXiv:1811.04083] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Poulin, T.L. Smith, D. Grin, T. Karwal and M. Kamionkowski, Cosmological implications of ultralight axionlike fields, Phys. Rev.D 98 (2018) 083525 [arXiv:1806.10608] [INSPIRE].
  42. [42]
    V. Poulin, K.K. Boddy, S. Bird and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, Phys. Rev.D 97 (2018) 123504 [arXiv:1803.02474] [INSPIRE].
  43. [43]
    P. Agrawal, F.-Y. Cyr-Racine, D. Pinner and L. Randall, Rocknroll solutions to the Hubble tension, arXiv:1904.01016 [INSPIRE].
  44. [44]
    T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Converting nonrelativistic dark matter to radiation, Phys. Rev.D 98 (2018) 023543 [arXiv:1803.03644] [INSPIRE].
  45. [45]
    C.D. Kreisch, F.-Y. Cyr-Racine and O. Doré, The neutrino puzzle: anomalies, interactions and cosmological tensions, arXiv:1902.00534 [INSPIRE].
  46. [46]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  47. [47]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  48. [48]
    PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  49. [49]
    E.W. Kolb and M.S. Turner, The early universe, Front. Phys.69 (1990) 1 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept.150 (1987) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M.S. Turner, Windows on the axion, Phys. Rept.197 (1990) 67 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev.D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].
  53. [53]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev.D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].
  54. [54]
    A. Merle and M. Totzauer, keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features, JCAP06 (2015) 011 [arXiv:1502.01011] [INSPIRE].
  55. [55]
    A. Merle, V. Niro and D. Schmidt, New production mechanism for keV sterile neutrino dark matter by decays of frozen-in scalars, JCAP03 (2014) 028 [arXiv:1306.3996] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    G. Kane, K. Sinha and S. Watson, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys.D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].
  57. [57]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev. Lett.81 (1998) 4048 [hep-ph/9805473] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev.D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].
  59. [59]
    D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev.D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
  60. [60]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
  61. [61]
    J.H. MacGibbon and B.R. Webber, Quark and gluon jet emission from primordial black holes: the instantaneous spectra, Phys. Rev.D 41 (1990) 3052 [INSPIRE].
  62. [62]
    J.H. MacGibbon, Quark and gluon jet emission from primordial black holes: 2. The lifetime emission, Phys. Rev.D 44 (1991) 376 [INSPIRE].
  63. [63]
    S. Bird et al., Did LIGO detect dark matter?, Phys. Rev. Lett.116 (2016) 201301 [arXiv:1603.00464] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    B. Carr, F. Kuhnel and M. Sandstad, Primordial black holes as dark matter, Phys. Rev.D 94 (2016) 083504 [arXiv:1607.06077] [INSPIRE].
  65. [65]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev.D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
  66. [66]
    S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev.D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].
  67. [67]
    S.W. Hawking, Black hole explosions, Nature248 (1974) 30 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    B.J. Carr, Some cosmological consequences of primordial black-hole evaporations, Astrophys. J.206 (1976) 8 [INSPIRE].
  69. [69]
    Ya. B. Zeldovich, Charge asymmetry of the universe due to black hole evaporation and weak interaction asymmetry, Pisma Zh. Eksp. Teor. Fiz.24 (1976) 29 [INSPIRE].
  70. [70]
    D. Toussaint, S.B. Treiman, F. Wilczek and A. Zee, Matter-antimatter accounting, thermodynamics and black hole radiation, Phys. Rev.D 19 (1979) 1036 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A.F. Grillo, Primordial black holes and baryon production in grand unified theories, Phys. Lett.B 94 (1980) 364 [INSPIRE].
  72. [72]
    M.S. Turner, Baryon production by primordial black holes, Phys. Lett.B 89 (1979) 155 [INSPIRE].
  73. [73]
    J.D. Barrow, E.J. Copeland, E.W. Kolb and A.R. Liddle, Baryogenesis in extended inflation. 2. Baryogenesis via primordial black holes, Phys. Rev.D 43 (1991) 984 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.S. Majumdar, P. Das Gupta and R.P. Saxena, Baryogenesis from black hole evaporation, Int. J. Mod. Phys.D 4 (1995) 517 [INSPIRE].
  75. [75]
    A.G. Polnarev and M. Yu. Khlopov, Cosmology, primordial black holes and supermassive particles, Sov. Phys. Usp.28 (1985) 213 [Usp. Fiz. Nauk145 (1985) 369] [INSPIRE].
  76. [76]
    E.V. Bugaev, M.G. Elbakidze and K.V. Konishchev, Baryon asymmetry of the universe from evaporation of primordial black holes, Phys. Atom. Nucl.66 (2003) 476 [Yad. Fiz.66 (2003) 504] [astro-ph/0110660] [INSPIRE].
  77. [77]
    N. Upadhyay, P. Das Gupta and R.P. Saxena, Baryogenesis from primordial black holes after electroweak phase transition, Phys. Rev.D 60 (1999) 063513 [astro-ph/9903253] [INSPIRE].
  78. [78]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.B 155 (1985) 36 [INSPIRE].
  79. [79]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].
  80. [80]
    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev.D 42 (1990) 3344 [INSPIRE].
  81. [81]
    D. Baumann, P.J. Steinhardt and N. Turok, Primordial black hole baryogenesis, hep-th/0703250 [INSPIRE].
  82. [82]
    Y. Hamada and S. Iso, Baryon asymmetry from primordial black holes, PTEP2017 (2017) 033B02 [arXiv:1610.02586] [INSPIRE].
  83. [83]
    A. Hook, Baryogenesis from Hawking radiation, Phys. Rev.D 90 (2014) 083535 [arXiv:1404.0113] [INSPIRE].
  84. [84]
    CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].
  85. [85]
    D. Baumann, D. Green and B. Wallisch, Searching for light relics with large-scale structure, JCAP08 (2018) 029 [arXiv:1712.08067] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins, arXiv:1902.10541 [INSPIRE].
  87. [87]
    R. Allahverdi, J. Dent and J. Osinski, Nonthermal production of dark matter from primordial black holes, Phys. Rev.D 97 (2018) 055013 [arXiv:1711.10511] [INSPIRE].
  88. [88]
    D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, JCAP06 (2009) 023 [arXiv:0904.3331] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J.H. MacGibbon, Can Planck-mass relics of evaporating black holes close the universe?, Nature329 (1987) 308 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    B.J. Carr, J.H. Gilbert and J.E. Lidsey, Black hole relics and inflation: limits on blue perturbation spectra, Phys. Rev.D 50 (1994) 4853 [astro-ph/9405027] [INSPIRE].
  91. [91]
    J.D. Barrow, E.J. Copeland and A.R. Liddle, The cosmology of black hole relics, Phys. Rev.D 46 (1992) 645 [INSPIRE].
  92. [92]
    D. Carney, S. Ghosh, G. Krnjaic and J.M. Taylor, Gravitational direct detection of dark matter, arXiv:1903.00492 [INSPIRE].
  93. [93]
    P. Svrček, Cosmological constant and axions in string theory, submitted to JHEP (2006) [hep-th/0607086] [INSPIRE].
  94. [94]
    P. Svrček and E. Witten, Axions in string theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
  96. [96]
    P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].
  97. [97]
    A.M. Green and A.R. Liddle, Constraints on the density perturbation spectrum from primordial black holes, Phys. Rev.D 56 (1997) 6166 [astro-ph/9704251] [INSPIRE].
  98. [98]
    A.M. Green, Supersymmetry and primordial black hole abundance constraints, Phys. Rev.D 60 (1999) 063516 [astro-ph/9903484] [INSPIRE].
  99. [99]
    M. Lemoine, Moduli constraints on primordial black holes, Phys. Lett.B 481 (2000) 333 [hep-ph/0001238] [INSPIRE].
  100. [100]
    M. Yu. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, Class. Quant. Grav.23 (2006) 1875 [astro-ph/0406621] [INSPIRE].
  101. [101]
    K.M. Nollett and G. Steigman, BBN and the CMB constrain light, electromagnetically coupled WIMPs, Phys. Rev.D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].
  102. [102]
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett.64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    P.C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev.136 (1964) B1224 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    H. Bondi, On spherically symmetrical accretion, Mon. Not. Roy. Astron. Soc.112 (1952) 195 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Dan Hooper
    • 1
    • 2
    • 3
  • Gordan Krnjaic
    • 1
  • Samuel D. McDermott
    • 1
    Email author
  1. 1.Theoretical Astrophysics Group, Fermi National Accelerator LaboratoryBataviaU.S.A.
  2. 2.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.
  3. 3.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations