Advertisement

Soft-drop thrust

  • Jeremy Baron
  • Simone MarzaniEmail author
  • Vincent Theeuwes
Open Access
Regular Article - Theoretical Physics

Abstract

Soft drop, a technique originally developed in the context of jet physics in proton-proton collisions in order to reduce the contamination from non-perturbative effects, is applied to event shapes in electron-positron annihilation. In particular, we study the thrust distribution at the Z pole and show that the region where non-perturbative corrections due to the hadronisation process are small is considerably extended if soft drop is applied. Therefore, we argue that the use of soft drop to reduce hadronisation effects is potentially of great benefit in the context of strong coupling determination using event shapes, which would be otherwise characterised by a strong correlation between αs and non-perturbative parameters. However, reduced sensitivity to hadronisation corrections is only one of the aspects that need to be considered. In this context, we show that perturbative calculability, especially away from the soft and collinear region of the event-shape spectrum, has a nontrivial interplay with the soft-drop observable of choice. To this purpose, besides thrust, we investigate the behaviour of the hemisphere mass as well as the jet mass. We find that the latter shows the most promising behaviour in the intermediate region of the spectrum, especially if small jet radii are considered.

Keywords

QCD Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  2. [2]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  3. [3]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glxover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].
  6. [6]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009)041 [arXiv:0904.1077] [INSPIRE].
  7. [7]
    S. Weinzierl, Jet algorithms in electron-positron annihilation: Perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [Erratum ibid. C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].
  8. [8]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].
  9. [9]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].
  10. [10]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].
  12. [12]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  13. [13]
    A. Banfi, G.P. Salam and G. Zanderighi, Generalized resummation of QCD final state observables, Phys. Lett. B 584 (2004) 298 [hep-ph/0304148] [INSPIRE].
  14. [14]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].
  15. [15]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].
  16. [16]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e + e at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett. 117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].
  17. [17]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich and H. Stenzel, First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e + e annihilations, JHEP 02 (2008) 040 [arXiv:0712.0327] [INSPIRE].
  20. [20]
    R.A. Davison and B.R. Webber, Non-Perturbative Contribution to the Thrust Distribution in e + e Annihilation, Eur. Phys. J. C 59 (2009) 13 [arXiv:0809.3326] [INSPIRE].
  21. [21]
    JADE collaboration, S. Bethke et al., Determination of the strong coupling α s from hadronic event shapes with O(α s3) and resummed QCD predictions using JADE data, Eur. Phys. J. C 64 (2009)351 [arXiv:0810.1389] [INSPIRE].
  22. [22]
    G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e + e annihilations, JHEP 08 (2009) 036 [arXiv:0906.3436] [INSPIRE].
  23. [23]
    OPAL collaboration, G. Abbiendi et al., Determination of alpha s using OPAL hadronic event shapes at \( \sqrt{s} = 91-209 \) GeV and resummed NNLO calculations, Eur. Phys. J. C 71 (2011)1733 [arXiv:1101.1470] [INSPIRE].
  24. [24]
    E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G.C. Fox and S. Wolfram, Observables for the analysis of event shapes in e + e annihilation and other processes, Phys. Rev. Lett. 41 (1978) 1581 [INSPIRE].
  26. [26]
    R. Abbate et al., Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
  27. [27]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, Precise determination of α s from the C-parameter distribution, Phys. Rev. D 91 (2015) 094018 [arXiv:1501.04111] [INSPIRE].
  28. [28]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
  29. [29]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].
  30. [30]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
  31. [31]
    D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].
  32. [32]
    A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].
  33. [33]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].
  37. [37]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].
  38. [38]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].
  39. [39]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after soft drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
  42. [42]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  44. [44]
    Z.-B. Kang, K. Lee, X. Liu and F. Ringer, The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC, arXiv:1803.03645 [INSPIRE].
  45. [45]
    A.J. Larkoski, I. Moult and D. Neill, Factorization and resummation for groomed multi-prong jet shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    CMS collaboration, Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SMP-16-010.
  47. [47]
    ATLAS collaboration, A measurement of the soft-drop jet mass in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, arXiv:1711.08341 [INSPIRE].
  48. [48]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  49. [49]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  50. [50]
    S. Catani, G. Turnock, B.R. Webber and L. Trentadue, Thrust distribution in e + e annihilation, Phys. Lett. B 263 (1991) 491 [INSPIRE].
  51. [51]
    S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  52. [52]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  53. [53]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].
  54. [54]
    M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].
  57. [57]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  58. [58]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  59. [59]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
  62. [62]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  63. [63]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  64. [64]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].
  65. [65]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].
  66. [66]
    S.D. Ellis et al., Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].
  68. [68]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].
  69. [69]
    S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].
  70. [70]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].
  71. [71]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
  72. [72]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].
  73. [73]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a short distance top mass with light grooming, arXiv:1708.02586 [INSPIRE].
  74. [74]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].
  75. [75]
    R.W.L. Jones, M. Ford, G.P. Salam, H. Stenzel and D. Wicke, Theoretical uncertainties on α s from event shape variables in e + e annihilations, JHEP 12 (2003) 007 [hep-ph/0312016] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.University at Buffalo, The State University of New YorkBuffaloU.S.A.
  2. 2.Dipartimento di Fisica, Università di Genova and INFN — Sezione di GenovaGenoaItaly
  3. 3.Institute for Theoretical Physics, Georg-August-Univesity GöttingenGöttingenGermany

Personalised recommendations