Advertisement

\( \mathcal{N}=2 \) moduli of AdS4 vacua: a fine-print study

  • Constantin Bachas
  • Massimo Bianchi
  • Amihay Hanany
Open Access
Regular Article - Theoretical Physics

Abstract

We analyze the moduli spaces near \( \mathcal{N}=4 \) supersymmetric AdS4 vacua of string theory by combining and comparing various approaches: (a) the known exact solutions of Type IIB string theory with localized 5-brane sourcees; (b) the holographically dual 3d quiver gauge theories; (c) gauged supergravity; and (d) the representations of the superconformal algebra \( \mathfrak{o}\mathfrak{s}\mathfrak{p}\left(4\left|4\right|\right) \). Short multiplets containing the marginal \( \mathcal{N}=2 \) deformations transform in the (2; 0), (0; 2) or (1; 1) representations of the R-symmetry group SU(2)H × SU(2)C. The first two are classified by the chiral rings of the Higgs and Coulomb branches, while the latter contain mixed-branch operators. We identify the origin of these moduli in string theory, matching in particular the operators of the chiral rings with open strings on the magnetized 5-brane sources. Our results provide new evidence for the underlying holographic duality. The existence of a large number of bound-state moduli highlights the limitations of effective supergravity.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry Conformal Field Models in String Theory Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Graña, Flux compactifications in string theory: A comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].
  2. [2]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    B. Assel, C. Bachas, J. Estes and J. Gomis, IIB Duals of D = 3 N = 4 Circular Quivers, JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Louis and H. Triendl, Maximally supersymmetric AdS 4 vacua in N = 4 supergravity, JHEP 10 (2014) 007 [arXiv:1406.3363] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F.A. Dolan, On Superconformal Characters and Partition Functions in Three Dimensions, J. Math. Phys. 51 (2010) 022301 [arXiv:0811.2740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE].
  13. [13]
    B. Assel, Ring Relations and Mirror Map from Branes, JHEP 03 (2017) 152 [arXiv:1701.08766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Kounnas, D. Lüst, P.M. Petropoulos and D. Tsimpis, AdS4 flux vacua in type-II superstrings and their domain-wall solutions, JHEP 09 (2007) 051 [arXiv:0707.4270] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CFT 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [INSPIRE].
  20. [20]
    M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Haack, D. Lüst, L. Martucci and A. Tomasiello, Domain walls from ten dimensions, JHEP 10 (2009) 089 [arXiv:0905.1582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Passias, G. Solard and A. Tomasiello, \( \mathcal{N}=2 \) supersymmetric AdS 4 solutions of type IIB supergravity, JHEP 04 (2018) 005 [arXiv:1709.09669] [INSPIRE].CrossRefzbMATHGoogle Scholar
  25. [25]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
  26. [26]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
  27. [27]
    P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].
  28. [28]
    C. Bachas, J. Hoppe and B. Pioline, Nahm equations, N = 1* domain walls and D strings in AdS 5 × S 5, JHEP 07 (2001) 041 [hep-th/0007067] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Brieskorn, Singular Elements of Semi-Simple Algebraic Groups, Actes, Congres Intern. Math. 2 (1970) 279.Google Scholar
  30. [30]
    P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lect. Notes Math. 815 (1980).Google Scholar
  31. [31]
    A. Kapustin, D-branes in a topologically nontrivial B field, Adv. Theor. Math. Phys. 4 (2000) 127 [hep-th/9909089] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Bouwknegt and V. Mathai, D-branes, B fields and twisted k-theory, JHEP 03 (2000) 007 [hep-th/0002023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].
  34. [34]
    M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M.R. Douglas, Branes within branes, in Strings, branes and dualities. Proceedings, NATO Advanced Study Institute, Cargese, France, May 26 – June 14, 1997, pp. 267–275, hep-th/9512077 [INSPIRE].
  36. [36]
    E.J. Weinberg, Monopole vector spherical harmonics, Phys. Rev. D 49 (1994) 1086 [hep-th/9308054] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    R. Jackiw and C. Rebbi, Solitons with Fermion Number 1/2, Phys. Rev. D 13 (1976) 3398 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    P. Hasenfratz and G. ’t Hooft, A Fermion-Boson Puzzle in a Gauge Theory, Phys. Rev. Lett. 36 (1976) 1119 [INSPIRE].
  39. [39]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP 06 (2011) 005 [arXiv:1103.2800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Agarwal, N. Beisert and T. McLoughlin, Scattering in Mass-Deformed N≥4 Chern-Simons Models, JHEP 06 (2009) 045 [arXiv:0812.3367] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    H.-C. Kim and S. Kim, Supersymmetric vacua of mass-deformed M2-brane theory, Nucl. Phys. B 839 (2010) 96 [arXiv:1001.3153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Cheon, H.-C. Kim and S. Kim, Holography of mass-deformed M2-branes, arXiv:1101.1101 [INSPIRE].
  47. [47]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field theories, JHEP 08 (2005) 024 [hep-th/0502043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].
  53. [53]
    O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    V. Asnin, On metric geometry of conformal moduli spaces of four-dimensional superconformal theories, JHEP 09 (2010) 012 [arXiv:0912.2529] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    M. Bianchi, J.F. Morales and H. Samtleben, On stringy AdS 5 × S 5 and higher spin holography, JHEP 07 (2003) 062 [hep-th/0305052] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, On the spectrum of AdS/CFT beyond supergravity, JHEP 02 (2004) 001 [hep-th/0310292] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4 SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. Bianchi, P.J. Heslop and F. Riccioni, More on La Grande Bouffe, JHEP 08 (2005) 088 [hep-th/0504156] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Bianchi, F.A. Dolan, P.J. Heslop and H. Osborn, N = 4 superconformal characters and partition functions, Nucl. Phys. B 767 (2007) 163 [hep-th/0609179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    L. Andrianopoli and S. Ferrara, On short and long SU(2,2/4) multiplets in the AdS/CFT correspondence, Lett. Math. Phys. 48 (1999) 145 [hep-th/9812067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g 4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Properties of the Konishi multiplet in N = 4 SYM theory, JHEP 05 (2001) 042 [hep-th/0104016] [INSPIRE].
  63. [63]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4 SYM theory, JHEP 08 (1999) 020 [hep-th/9906188] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. de Alwis, J. Louis, L. McAllister, H. Triendl and A. Westphal, Moduli spaces in AdS 4 supergravity, JHEP 05 (2014) 102 [arXiv:1312.5659] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p,q)-fivebrane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    B. Assel, The Space of Vacua of 3d \( \mathcal{N}=3 \) Abelian Theories, JHEP 08 (2017) 011 [arXiv:1706.00793] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04 (2018) 127 [arXiv:1711.02378] [INSPIRE].
  69. [69]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de l’ École Normale Supérieure, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06Paris Cedex 05France
  2. 2.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomaItaly
  3. 3.I.N.F.N. Sezione di Roma “Tor Vergata”RomaItaly
  4. 4.Theoretical Physics GroupImperial College LondonLondonU.K.

Personalised recommendations