Advertisement

On multi-spin classical strings with NS-NS flux

  • Aritra Banerjee
  • Sagar Biswas
  • Kamal L. Panigrahi
Open Access
Regular Article - Theoretical Physics

Abstract

We study multi spin semiclassical strings in AdS3 × S3 × T4 background supported by a mixture of Neveu-Schwarz-Neveu-Schwarz (NS-NS) and Ramond-Ramond (R-R) fluxes. This ‘mixed flux’ background has been recently proved to be classically integrable. We start with a particular rigidly spinning fundamental string in AdS3 ×S1 coupled to the NS-NS flux and classify the possible profiles. We also find out how the scaling relation among the energy and angular momenta of such a string changes due to presence of these fluxes. We emphasize on pure NS-NS flux case and discuss the fate of such solutions in that limit.

Keywords

AdS-CFT Correspondence Bosonic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Sfondrini, Towards integrability for AdS 3 /CF T 2, J. Phys. A 48 (2015) 023001 [arXiv:1406.2971] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.R. David and B. Sahoo, S-matrix for magnons in the D1-D5 system, JHEP 10 (2010) 112 [arXiv:1005.0501] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Ohlsson Sax, B. Stefanski Jr. and A. Torrielli, On the massless modes of the AdS 3 /CFT 2 integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].ADSzbMATHGoogle Scholar
  7. [7]
    C. Ahn and D. Bombardelli, Exact S-matrices for AdS 3 /CFT 2, Int. J. Mod. Phys. A 28 (2013) 1350168 [arXiv:1211.4512] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Sundin and L. Wulff, Worldsheet scattering in AdS 3 /CFT 2, JHEP 07 (2013) 007 [arXiv:1302.5349] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski and A. Torrielli, The all-loop integrable spin-chain for strings on AdS 3 × S 3 × T 4 : the massive sector, JHEP 08 (2013) 043 [arXiv:1303.5995] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski, Jr. and A. Torrielli, Dressing phases of AdS 3 /CFT 2, Phys. Rev. D 88 (2013) 066004 [arXiv:1306.2512] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, Towards the all-loop worldsheet S matrix for AdS 3 × S 3 × T 4, Phys. Rev. Lett. 113 (2014) 131601 [arXiv:1403.4543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    L. Bianchi and B. Hoare, AdS 3 × S 3 × M 4 string S-matrices from unitarity cuts, JHEP 08 (2014) 097 [arXiv:1405.7947] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, The complete AdS 3 × S 3 × T 4 worldsheet S matrix, JHEP 10 (2014) 066 [arXiv:1406.0453] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Pittelli, A. Torrielli and M. Wolf, Secret symmetries of type IIB superstring theory on AdS 3 × S 3 × M 4, J. Phys. A 47 (2014) 455402 [arXiv:1406.2840] [INSPIRE].ADSzbMATHGoogle Scholar
  15. [15]
    T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefański, Jr., The complete worldsheet S matrix of superstrings on AdS 3 × S 3 × T 4 with mixed three-form flux, Nucl. Phys. B 891 (2015) 570 [arXiv:1410.0866] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, On the spectrum of AdS 3 × S 3 × T 4 strings with Ramond-Ramond flux, J. Phys. A 49 (2016) 41LT03 [arXiv:1605.00518] [INSPIRE].
  17. [17]
    P. Sundin and L. Wulff, The complete one-loop BMN S-matrix in AdS 3 × S 3 × T 4, JHEP 06 (2016) 062 [arXiv:1605.01632] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański, A. Torrielli and O. Ohlsson Sax, On the dressing factors, Bethe equations and Yangian symmetry of strings on AdS 3 × S 3 × T 4, J. Phys. A 50 (2017) 024004 [arXiv:1607.00914] [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string spectrum in AdS 3 /CFT 2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    O. Ohlsson Sax and B. Stefański Jr., Integrability, spin-chains and the AdS 3 /CFT 2 correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].zbMATHGoogle Scholar
  21. [21]
    N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 07 (2012) 159 [arXiv:1204.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic SU(1|1)2 S-matrix for AdS 3 /CFT 2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for AdS 3 /CFT 2, JHEP 04 (2013) 116 [arXiv:1212.0505] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, The AdS 3 × S 3 × S 3 × S 1 worldsheet S matrix, J. Phys. A 48 (2015) 415401 [arXiv:1506.00218] [INSPIRE].zbMATHGoogle Scholar
  25. [25]
    M.C. Abbott, Comment on strings in AdS 3 × S 3 × S 3 × S 1 at one loop, JHEP 02 (2013) 102 [arXiv:1211.5587] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.C. Abbott, The AdS 3 × S 3 × S 3 × S 1 Hernández-López phases: a semiclassical derivation, J. Phys. A 46 (2013) 445401 [arXiv:1306.5106] [INSPIRE].ADSzbMATHGoogle Scholar
  27. [27]
    M.C. Abbott and I. Aniceto, Macroscopic (and microscopic) massless modes, Nucl. Phys. B 894 (2015) 75 [arXiv:1412.6380] [INSPIRE].
  28. [28]
    L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS 3 × S 3 × S 3 × S 1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS 3 × S 3 × S 3 × S 1, JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3, JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3 /CFT 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CFT 2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  38. [38]
    B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    B. Hoare and A.A. Tseytlin, Massive S-matrix of AdS 3 × S 3 × T 4 superstring theory with mixed 3-form flux, Nucl. Phys. B 873 (2013) 395 [arXiv:1304.4099] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS 3 × S 3 × T 4 with mixed flux, Nucl. Phys. B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., The complete worldsheet S matrix of superstrings on AdS 3 × S 3 × T 4 with mixed three-form flux, Nucl. Phys. B 891 (2015) 570 [arXiv:1410.0866] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    P. Sundin and L. Wulff, One- and two-loop checks for the AdS 3 × S 3 × T 4 superstring with mixed flux, J. Phys. A 48 (2015) 105402 [arXiv:1411.4662] [INSPIRE].ADSzbMATHGoogle Scholar
  43. [43]
    M. Baggio and A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys. Rev. D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].ADSGoogle Scholar
  44. [44]
    O. Ohlsson Sax and B. Stefanski, Closed strings and moduli in AdS 3 /CFT 2, JHEP 05 (2018) 101 [arXiv:1804.02023] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, R) WZW model 1: the spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Baggio and A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys. Rev. D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Dei and A. Sfondrini, Integrable spin chain for stringy Wess-Zumino-Witten models, JHEP 07 (2018) 109 [arXiv:1806.00422] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    L. Eberhardt and K. Ferreira, The plane-wave spectrum from the worldsheet, arXiv:1805.12155 [INSPIRE].
  50. [50]
    S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Frolov and A.A. Tseytlin, Multispin string solutions in AdS 5 × S 5, Nucl. Phys. B 668 (2003) 77 [hep-th/0304255] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Frolov and A.A. Tseytlin, Quantizing three spin string solution in AdS 5 × S 5, JHEP 07 (2003) 016 [hep-th/0306130] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Babichenko, A. Dekel and O. Ohlsson Sax, Finite-gap equations for strings on AdS 3 × S 3 × T 4 with mixed 3-form flux, JHEP 11 (2014) 122 [arXiv:1405.6087] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    T. Lloyd and B. Stefanski Jr., AdS 3 /CFT 2 , finite-gap equations and massless modes, JHEP 04 (2014) 179 [arXiv:1312.3268] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J.R. David and A. Sadhukhan, Spinning strings and minimal surfaces in AdS 3 with mixed 3-form fluxes, JHEP 10 (2014) 049 [arXiv:1405.2687] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Banerjee, K.L. Panigrahi and P.M. Pradhan, Spiky strings on AdS 3 × S 3 with NS-NS flux, Phys. Rev. D 90 (2014) 106006 [arXiv:1405.5497] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Ahn and P. Bozhilov, String solutions in AdS 3 × S 3 × T 4 with NS-NS B-field, Phys. Rev. D 90 (2014) 066010 [arXiv:1404.7644] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Banerjee, K.L. Panigrahi and M. Samal, A note on oscillating strings in AdS 3 × S 3 with mixed three-form fluxes, JHEP 11 (2015) 133 [arXiv:1508.03430] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    S.P. Barik, K.L. Panigrahi and M. Samal, Perturbations of pulsating strings, arXiv:1708.05202 [INSPIRE].
  60. [60]
    A. Banerjee and A. Sadhukhan, Multi-spike strings in AdS 3 with mixed three-form fluxes, JHEP 05 (2016) 083 [arXiv:1512.01816] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    R. Hernández and J.M. Nieto, Spinning strings in AdS 3 × S 3 with NS-NS flux, Nucl. Phys. B 888 (2014) 236 [Erratum ibid. B 895 (2015) 303] [arXiv:1407.7475] [INSPIRE].
  62. [62]
    R. Hernández and J.M. Nieto, Elliptic solutions in the Neumann-Rosochatius system with mixed flux, Phys. Rev. D 91 (2015) 126006 [arXiv:1502.05203] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    R. Hernández, J.M. Nieto and R. Ruiz, Pulsating strings with mixed three-form flux, JHEP 04 (2018) 078 [arXiv:1803.03078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    J.M. Nieto and R. Ruiz, One-loop quantization of rigid spinning strings in AdS 3 × S 3 × T 4 with mixed flux, JHEP 07 (2018) 141 [arXiv:1804.10477] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Banerjee, S. Biswas and R.R. Nayak, D1 string dynamics in curved backgrounds with fluxes, JHEP 04 (2016) 172 [arXiv:1601.06360] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S. Ryang, Three-spin giant magnons in AdS 5 × S 5, JHEP 12 (2006) 043 [hep-th/0610037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states, JHEP 08 (2006) 049 [hep-th/0606145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    M. Blau, M. O’Loughlin, G. Papadopoulos and A.A. Tseytlin, Solvable models of strings in homogeneous plane wave backgrounds, Nucl. Phys. B 673 (2003) 57 [hep-th/0304198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    R.R. Metsaev, Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background, Nucl. Phys. B 625 (2002) 70 [hep-th/0112044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsRamakrishna Mission VidyamandiraHowrahIndia
  3. 3.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations