Advertisement

A flavoured dark sector

  • Sophie Renner
  • Pedro Schwaller
Open Access
Regular Article - Experimental Physics
  • 23 Downloads

Abstract

We explore the phenomenology of a QCD-like dark sector which confines around the GeV scale. The dark sector inherits a flavour structure from a coupling between dark quarks and SM quarks via a heavy mediator, which leads to exciting new phenomena. While stable baryonic bound states are the dark matter candidates, the phenomenology is dominated by the lightest composite mesons, the dark pions, which can have decay lengths ranging from millimetres to hundreds of meters. For masses below 1.5 GeV, their exclusive decays to SM mesons are calculated for the first time by matching both dark and visible sectors to a chiral Lagrangian. Constraints from big bang nucleosynthesis, dark matter direct detection and flavour single out a small region of allowed parameter space for dark pion masses below 5 GeV. It is best probed by the fixed target experiments NA62 and SHiP, where dark pions can be produced copiously in rare decays like BD . The dominant πDK±π and πD → 3π decay modes are a smoking gun for a CP-odd, flavour violating new resonance. Heavier dark pions are best searched for at the LHC, where they decay after hadronisation to produce jets which emerge into SM states within the detector. Here the flavour structure ensures different flavours emerge on different length scales, leading to a striking new feature in the emerging jets signature.

Keywords

Beyond Standard Model Dark matter Flavor physics Hadron-Hadron scattering (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  2. [2]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP 07 (2015) 105 [arXiv:1501.05310] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].
  6. [6]
    M.R. Buckley and E.T. Neil, Thermal dark matter from a confining sector, Phys. Rev. D 87 (2013) 043510 [arXiv:1209.6054] [INSPIRE].
  7. [7]
    T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
  8. [8]
    Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev. D 89 (2014) 063522 [arXiv:1306.4676] [INSPIRE].
  9. [9]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].
  10. [10]
    K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-Interacting Dark Matter from a Non-Abelian Hidden Sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
  12. [12]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Garcia Garcia, R. Lasenby and J. March-Russell, Twin Higgs WIMP Dark Matter, Phys. Rev. D 92 (2015) 055034 [arXiv:1505.07109] [INSPIRE].
  14. [14]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].
  15. [15]
    K.R. Dienes, F. Huang, S. Su and B. Thomas, Dynamical Dark Matter from Strongly-Coupled Dark Sectors, Phys. Rev. D 95 (2017) 043526 [arXiv:1610.04112] [INSPIRE].
  16. [16]
    S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].
  17. [17]
    H. Davoudiasl, P.P. Giardino, E.T. Neil and E. Rinaldi, Unified Scenario for Composite Right-Handed Neutrinos and Dark Matter, Phys. Rev. D 96 (2017) 115003 [arXiv:1709.01082] [INSPIRE].
  18. [18]
    A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Cosmology and Accelerator Tests of Strongly Interacting Dark Matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].
  19. [19]
    J. Halverson, B.D. Nelson and F. Ruehle, String Theory and the Dark Glueball Problem, Phys. Rev. D 95 (2017) 043527 [arXiv:1609.02151] [INSPIRE].
  20. [20]
    B.S. Acharya, M. Fairbairn and E. Hardy, Glueball dark matter in non-standard cosmologies, JHEP 07 (2017) 100 [arXiv:1704.01804] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  22. [22]
    M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B 661 (2008) 263 [hep-ph/0605193] [INSPIRE].
  23. [23]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, 2016, arXiv:1608.08632 [INSPIRE].
  24. [24]
    P. Schwaller, D. Stolarski and A. Weiler, Emerging Jets, JHEP 05 (2015) 059 [arXiv:1502.05409] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Batell, J. Pradler and M. Spannowsky, Dark Matter from Minimal Flavor Violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter, and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].
  27. [27]
    L. Calibbi, A. Crivellin and B. Zaldívar, Flavor portal to dark matter, Phys. Rev. D 92 (2015) 016004 [arXiv:1501.07268] [INSPIRE].
  28. [28]
    P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond Minimal Flavor Violation, JHEP 10 (2014) 072 [arXiv:1405.6709] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H.-C. Cheng, S. Jung, E. Salvioni and Y. Tsai, Exotic Quarks in Twin Higgs Models, JHEP 03 (2016) 074 [arXiv:1512.02647] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Jubb, M. Kirk and A. Lenz, Charming Dark Matter, JHEP 12 (2017) 010 [arXiv:1709.01930] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    M. Blanke, S. Das and S. Kast, Flavoured Dark Matter Moving Left, JHEP 02 (2018) 105 [arXiv:1711.10493] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E.C. Poggio, H.R. Quinn and S. Weinberg, Smearing the Quark Model, Phys. Rev. D 13 (1976) 1958 [INSPIRE].
  34. [34]
    M.A. Shifman, Quark hadron duality, in At the frontier of particle physics. Handbook of QCD, Vol. 1-3, World Scientific, Singapore, (2001), pp. 1447-1494, hep-ph/0009131, [INSPIRE].
  35. [35]
    T. Cohen, M. Lisanti and H.K. Lou, Semivisible Jets: Dark Matter Undercover at the LHC, Phys. Rev. Lett. 115 (2015) 171804 [arXiv:1503.00009] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Cohen, M. Lisanti, H.K. Lou and S. Mishra-Sharma, LHC Searches for Dark Sector Showers, JHEP 11 (2017) 196 [arXiv:1707.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    CMS collaboration, Search for new physics with dijet angular distributions in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 013 [arXiv:1703.09986] [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  39. [39]
    S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events, JHEP 01 (2018) 094 [arXiv:1711.07484] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    UTfit collaboration, M. Bona, Unitarity Triangle analysis beyond the Standard Model from UTfit, PoS(ICHEP2016)149.
  41. [41]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
  42. [42]
    A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].
  43. [43]
    BaBar collaboration, J.P. Lees et al., Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
  44. [44]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].
  45. [45]
    J.F. Kamenik and C. Smith, FCNC portals to the dark sector, JHEP 03 (2012) 090 [arXiv:1111.6402] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    S. Martellotti, The NA62 Experiment at CERN, in Proceedings, 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015): Vail, Colorado, U.S.A., May 19-24, 2015, arXiv:1510.00172 [INSPIRE].
  47. [47]
    T. Aushev et al., Physics at Super B Factory, arXiv:1002.5012 [INSPIRE].
  48. [48]
    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for New Physics search in \( B\to {K}^{\ast}\nu \overline{\nu},\ B\to K\nu \overline{\nu} \) and \( B\to {X}_s\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].
  49. [49]
    D. McKeen, Constraining Light Bosons with Radiative Upsilon(1S) Decays, Phys. Rev. D 79 (2009) 015007 [arXiv:0809.4787] [INSPIRE].
  50. [50]
    U. Haisch, J.F. Kamenik, A. Malinauskas and M. Spira, Collider constraints on light pseudoscalars, JHEP 03 (2018) 178 [arXiv:1802.02156] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Nason, QCD Radiative Corrections to ϒ Decay Into Scalar Plus γ and Pseudoscalar Plus γ, Phys. Lett. B 175 (1986) 223 [INSPIRE].
  53. [53]
    M.L. Mangano and P. Nason, Radiative quarkonium decays and the NMSSM Higgs interpretation of the hyperCP Σ → + μ events, Mod. Phys. Lett. A 22 (2007) 1373 [arXiv:0704.1719] [INSPIRE].
  54. [54]
    BaBar collaboration, P. del Amo Sanchez et al., Search for Production of Invisible Final States in Single-Photon Decays of ϒ(1S), Phys. Rev. Lett. 107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].
  55. [55]
    BaBar collaboration, J.P. Lees et al., Search for hadronic decays of a light Higgs boson in the radiative decay ϒ → γA 0, Phys. Rev. Lett. 107 (2011) 221803 [arXiv:1108.3549] [INSPIRE].
  56. [56]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  57. [57]
    M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].
  58. [58]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from th XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  59. [59]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].
  60. [60]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  61. [61]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M.J. Strassler, On the Phenomenology of Hidden Valleys with Heavy Flavor, arXiv:0806.2385 [INSPIRE].
  63. [63]
    L. Carloni and T. Sjöstrand, Visible Effects of Invisible Hidden Valley Radiation, JHEP 09 (2010) 105 [arXiv:1006.2911] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L. Carloni, J. Rathsman and T. Sjöstrand, Discerning Secluded Sector gauge structures, JHEP 04 (2011) 091 [arXiv:1102.3795] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Knapen, S. Pagan Griso, M. Papucci and D.J. Robinson, Triggering Soft Bombs at the LHC, JHEP 08 (2017) 076 [arXiv:1612.00850] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Y. Cui, T. Okui and A. Yunesi, LHC Signatures of WIMP-triggered Baryogenesis, Phys. Rev. D 94 (2016) 115022 [arXiv:1605.08736] [INSPIRE].
  67. [67]
    H. Beauchesne, E. Bertuzzo, G. Grilli Di Cortona and Z. Tabrizi, Collider phenomenology of Hidden Valley mediators of spin 0 or 1/2 with semivisible jets, arXiv:1712.07160 [INSPIRE].
  68. [68]
    M. Park and M. Zhang, Tagging a jet from a dark sector with Jet-substructures at colliders, arXiv:1712.09279 [INSPIRE].
  69. [69]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  70. [70]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  72. [72]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  73. [73]
    NA62 collaboration, E. Cortina Gil et al., The beam and detector of the NA62 experiment at CERN, 2017 JINST 12 P05025 [arXiv:1703.08501] [INSPIRE].
  74. [74]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    SHiP collaboration, Heavy Flavour Cascade Production in a Beam Dump, CERN-SHiP-NOTE-2015-009 (2015).
  76. [76]
    NA62 collaboration, B. Döbrich, Searches for very weakly-coupled particles beyond the Standard Model with NA62, in Proceedings, 13th Patras Workshop on Axions, WIMPs and WISPs, (PATRAS 2017): Thessaloniki, Greece, May 15-19, 2017, pp. 145-148, arXiv:1711.08967 [INSPIRE].
  77. [77]
    G. Lanfranchi, Search for hidden sector particles at NA62, to appear in proceedings for the EPS-HEP 2017 conference, (2017).Google Scholar
  78. [78]
    B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP 02 (2016) 018 [arXiv:1512.03069] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].
  80. [80]
    A. Pierce, B. Shakya, Y. Tsai and Y. Zhao, Searching for confining hidden valleys at LHCb, ATLAS and CMS, Phys. Rev. D 97 (2018) 095033 [arXiv:1708.05389] [INSPIRE].
  81. [81]
    N. Byers and C.N. Yang, Physical regions in invariant variables for n particles and the phase-space volume element, Rev. Mod. Phys. 36 (1964) 595.ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam, The Netherlands, (2007).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations