Advertisement

BL as a gauged Peccei-Quinn symmetry

  • Masahiro Ibe
  • Motoo Suzuki
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract

The gauged Peccei-Quinn (PQ) mechanism provides a simple prescription to embed the global PQ symmetry into a gauged U(1) symmetry. As it originates from the gauged PQ symmetry, the global PQ symmetry can be protected from explicit breaking by quantum gravitational effects once appropriate charge assignment is given. In this paper, we identify the gauged PQ symmetry with the BL symmetry, which is obviously attractive as the BL gauge symmetry is the most authentic extension of the Standard Model. As we will show, a natural BL charge assignment can be found in a model motivated by the seesaw mechanism in the SU(5) Grand Unified Theory. As a notable feature of this model, it does not require extra SU(5) singlet matter fields other than the right-handed neutrinos to cancel the self and the gravitational anomalies.

Keywords

Beyond Standard Model Gauge Symmetry Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
  3. [3]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.W. Hawking, Quantum Coherence Down the Wormhole, Phys. Lett. B 195 (1987) 337 [INSPIRE].
  6. [6]
    G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity, JETP Lett. 46 (1987) 167 [INSPIRE].ADSGoogle Scholar
  7. [7]
    S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].
  8. [8]
    S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].
  9. [9]
    G. Gilbert, Wormhole induced proton decay, Nucl. Phys. B 328 (1989) 159 [INSPIRE].
  10. [10]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  11. [11]
    R. Alonso and A. Urbano, Wormholes and masses for Goldstone bosons, arXiv:1706.07415 [INSPIRE].
  12. [12]
    S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and String Theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.B. Giddings and A. Strominger, String wormholes, Phys. Lett. B 230 (1989) 46 [INSPIRE].
  14. [14]
    S.B. Giddings and A. Strominger, Baby Universes, Third Quantization and the Cosmological Constant, Nucl. Phys. B 321 (1989) 481 [INSPIRE].
  15. [15]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].
  16. [16]
    H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, A “gauged” U(1) Peccei-Quinn symmetry, Phys. Lett. B 771 (2017) 327 [arXiv:1703.01112] [INSPIRE].
  17. [17]
    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].
  18. [18]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
  19. [19]
    R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
  20. [20]
    M. Dine, Problems of naturalness: Some lessons from string theory, in Conference on Topics in Quantum Gravity, Cincinnati U.S.A. (1992), pg. 157 [hep-th/9207045] [INSPIRE].
  21. [21]
    A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D 67 (2003) 095008 [hep-ph/0211107] [INSPIRE].
  22. [22]
    L.M. Carpenter, M. Dine and G. Festuccia, Dynamics of the Peccei Quinn Scale, Phys. Rev. D 80 (2009) 125017 [arXiv:0906.1273] [INSPIRE].
  23. [23]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D 88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].
  24. [24]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn Symmetry from Dynamical Supersymmetry Breaking, Phys. Rev. D 92 (2015) 075003 [arXiv:1505.07388] [INSPIRE].
  25. [25]
    M. Redi and R. Sato, Composite Accidental Axions, JHEP 05 (2016) 104 [arXiv:1602.05427] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of Workshop on the Unified Theories and the Baryon Number in the Universe, Tsukuba Japan (1979) [Conf. Proc. C 7902131 (1979) 95] [INSPIRE].
  27. [27]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, in Supergravity Workshop, Stony Brook U.S.A. (1979) [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE].
  28. [28]
    S.L. Glashow, The Future of Elementary Particle Physics, in Cargese Summer Institute: Quarks and Leptons, Cargese France (1979) [NATO Sci. Ser. B 61 (1980) 687].Google Scholar
  29. [29]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  30. [30]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 17 (1986) 45 [INSPIRE].
  31. [31]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  32. [32]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
  33. [33]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].
  34. [34]
    P. Langacker, R.D. Peccei and T. Yanagida, Invisible Axions and Light Neutrinos: Are They Connected?, Mod. Phys. Lett. A 1 (1986) 541 [INSPIRE].
  35. [35]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].
  37. [37]
    H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, Gauged Peccei-Quinn symmetry — A case of simultaneous breaking of SUSY and PQ symmetry, JHEP 07 (2018) 128 [arXiv:1803.00759] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  39. [39]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, arXiv:1803.00993 [INSPIRE].
  40. [40]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. 98B (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D.H. Lyth, Axions and inflation: Sitting in the vacuum, Phys. Rev. D 45 (1992) 3394 [INSPIRE].
  42. [42]
    M. Kawasaki and K. Nakayama, Axions: Theory and Cosmological Role, Ann. Rev. Nucl. Part. Sci. 63 (2013) 69 [arXiv:1301.1123] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Kawasaki, E. Sonomoto and T.T. Yanagida, Cosmologically allowed regions for the axion decay constant F a, Phys. Lett. B 782 (2018) 181 [arXiv:1801.07409] [INSPIRE].
  44. [44]
    T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Production of dark matter axions from collapse of string-wall systems, Phys. Rev. D 85 (2012) 105020 [Erratum ibid. D 86 (2012) 089902] [arXiv:1202.5851] [INSPIRE].
  45. [45]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  46. [46]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].
  47. [47]
    M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].
  48. [48]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m 3/2 = 10 − 100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].
  49. [49]
    K. Kurosawa, N. Maru and T. Yanagida, Nonanomalous R symmetry in supersymmetric unified theories of quarks and leptons, Phys. Lett. B 512 (2001) 203 [hep-ph/0105136] [INSPIRE].
  50. [50]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].
  51. [51]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].
  52. [52]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Preskill and L.M. Krauss, Local Discrete Symmetry and Quantum Mechanical Hair, Nucl. Phys. B 341 (1990) 50 [INSPIRE].
  54. [54]
    J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Cosmology and broken discrete symmetry, Nucl. Phys. B 363 (1991) 207 [INSPIRE].
  55. [55]
    T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].
  56. [56]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].
  57. [57]
    L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].
  58. [58]
    C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].
  59. [59]
    H.M. Lee et al., A unique \( {\mathrm{\mathbb{Z}}}_{{}^4}^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].
  60. [60]
    M. Fallbacher, M. Ratz and P.K.S. Vaudrevange, No-go theorems for R symmetries in four-dimensional GUTs, Phys. Lett. B 705 (2011) 503 [arXiv:1109.4797] [INSPIRE].
  61. [61]
    J.L. Evans, M. Ibe, J. Kehayias and T.T. Yanagida, Non-Anomalous Discrete R-symmetry Decrees Three Generations, Phys. Rev. Lett. 109 (2012) 181801 [arXiv:1111.2481] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K.I. Izawa and T. Yanagida, R invariant natural unification, Prog. Theor. Phys. 97 (1997) 913 [hep-ph/9703350] [INSPIRE].
  63. [63]
    K. Harigaya, M. Ibe and M. Suzuki, Mass-splitting between haves and have-nots — symmetry vs. Grand Unified Theory, JHEP 09 (2015) 155 [arXiv:1505.05024] [INSPIRE].
  64. [64]
    ADMX collaboration, N. Du et al., A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett. 120 (2018) 151301 [arXiv:1804.05750] [INSPIRE].
  65. [65]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
  66. [66]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
  67. [67]
    M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].
  68. [68]
    M. Kawasaki, K. Nakayama and M. Senami, Cosmological implications of supersymmetric axion models, JCAP 03 (2008) 009 [arXiv:0711.3083] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  70. [70]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
  71. [71]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  72. [72]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
  73. [73]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].
  74. [74]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  75. [75]
    J.A. Casas and C. Muñoz, A Natural solution to the mu problem, Phys. Lett. B 306 (1993) 288 [hep-ph/9302227] [INSPIRE].
  76. [76]
    ADMX collaboration, S.J. Asztalos et al., A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].
  77. [77]
    K. van Bibber and G. Carosi, Status of the ADMX and ADMX-HF experiments, in 8th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2012), Chicago U.S.A. (2012) [arXiv:1304.7803] [INSPIRE].
  78. [78]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Cosmological Selection of Multi-TeV Supersymmetry, Phys. Lett. B 749 (2015) 298 [arXiv:1506.00426] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Masahiro Ibe
    • 1
    • 2
  • Motoo Suzuki
    • 1
    • 2
  • Tsutomu T. Yanagida
    • 1
  1. 1.Kavli IPMU (WPI), UTIAS, The University of TokyoKashiwaJapan
  2. 2.ICRR, The University of TokyoKashiwaJapan

Personalised recommendations