Advertisement

On the universality of late-time correlators in semi-classical 2d CFTs

  • Souvik Banerjee
  • Jan-Willem Bryan
  • Gideon Vos
Open Access
Regular Article - Theoretical Physics

Abstract

In the framework of the AdS3/ CFT2 correspondence, we present a systematic analysis of the late time thermalization of a two dimensional CFT state created by insertion of small number of heavy operators on the vacuum. We show that at late Lorentzian time, the universal features of this thermalization are solely captured by the eigenvalues of the monodromy matrix corresponding to the solutions of the uniformization equation. We discuss two different ways to extract the monodromy eigenvalues while bypassing the need for finding explicitly the full monodromy matrix - first, using a monodromy preserving diffeomorphism and second using Chen-Simons formulation of gravity in AdS3. Both of the methods yield the same precise relation between the eigenvalues and the final black hole temperature at late Lorentzian time.

Keywords

AdS-CFT Correspondence Black Holes Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  6. [6]
    M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. A 32 (1999) 1163.ADSMathSciNetMATHGoogle Scholar
  7. [7]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black hole collapse in the 1/c expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, From conformal blocks to path integrals in the Vaidya geometry, JHEP 09 (2017) 009 [arXiv:1706.02668] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    B. Chen, J.Q. Wu and J.J. Zhang, Holographic description of 2D conformal block in semi-classical limit, JHEP 10 (2016) 110 [arXiv:1609.00801] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    B. Chen and J.-q. Wu, Holographic Entanglement Entropy For a Large Class of States in 2D CFT, JHEP 09 (2016) 015 [arXiv:1605.06753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement entropy in heavy states, JHEP 05 (2016) 127 [arXiv:1601.06794] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A.L. Fitzpatrick and J. Kaplan, Conformal blocks beyond the semi-classical limit, JHEP 05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    L. Hadasz and Z. Jaskolski, Liouville theory and uniformization of four-punctured sphere, J. Math. Phys. 47 (2006) 082304 [hep-th/0604187] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Castro et al., Black hole scattering from monodromy, Class. Quant. Grav. 30 (2013) 165005 [arXiv:1304.3781] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  21. [21]
    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2D conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions. 2., Commun. Math. Phys. 42 (1975) 281 [INSPIRE].
  26. [26]
    M. Lüscher and G. Mack, Global conformal invariance in quantum field theory, Commun. Math. Phys. 41 (1975) 203 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton University Press, Princeton U.S.A. (1989).MATHGoogle Scholar
  28. [28]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    O. Hulík, T. Procházka and J. Raeymaekers, Multi-centered AdS3 solutions from Virasoro conformal blocks, JHEP 03 (2017) 129 [arXiv:1612.03879] [INSPIRE].
  30. [30]
    E.J. Martinec, Conformal field theory, geometry and entropy, hep-th/9809021 [INSPIRE].
  31. [31]
    E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    J. Balog, L. Feher and L. Palla, Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A 13 (1998) 315 [hep-th/9703045] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    G. Compère et al., Symplectic and Killing symmetries of AdS 3 gravity: holographic vs boundary gravitons, JHEP 01 (2016) 080 [arXiv:1511.06079] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Garbarz and M. Leston, Classification of boundary gravitons in AdS 3 gravity, JHEP 05 (2014) 141 [arXiv:1403.3367] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS 3 geometries, Eur. Phys. J. C 76 (2016) 493 [arXiv:1603.05272] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev. D 94 (2016) 126019 [arXiv:1604.05327] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    M. Ammon et al., Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  41. [41]
    A.L. Fitzpatrick et al., Exact Virasoro blocks from Wilson lines and background-independent operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    J. de Boer et al., Higher spin entanglement and \( {\mathcal{W}}_{\mathrm{N}} \) conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].
  43. [43]
    E. Witten, Topology-changing amplitudes in 2 + 1 dimensional gravity, Nucl. Phys. B 323 (1989) 113.ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    H. Röhrl, Holomorphic fiber bundles over riemann surfaces, Bull. Amer. Math. Soc. 68 (1962) 125.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C.T. Asplund et al., Entanglement scrambling in 2d conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    P. Caputa, T. Numasawa and A. Veliz-Osorio, Out-of-time-ordered correlators and purity in rational conformal field theories, PTEP 2016 (2016) 113B06 [arXiv:1602.06542] [INSPIRE].
  53. [53]
    L. Takhtajan and P. Zograf, Hyperbolic 2 spheres with conical singularities, accessory parameters and Kähler metrics on M (0, n), math/0112170 [INSPIRE].
  54. [54]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands

Personalised recommendations