Advertisement

All partial breakings in \( \mathcal{N}=2 \) supergravity with a single hypermultiplet

  • Ignatios Antoniadis
  • Jean-Pierre Derendinger
  • P. Marios Petropoulos
  • Konstantinos Siampos
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We consider partial supersymmetry breaking in \( \mathcal{N}=2 \) supergravity coupled to a single vector and a single hypermultiplet. This breaking pattern is in principle possible if the quaternion-Kähler space of the hypermultiplet admits (at least) one pair of commuting isometries. For this class of manifolds, explicit metrics exist and we analyse a generic electro-magnetic (dyonic) gauging of the isometries. An example of partial breaking in Minkowski spacetime has been found long ago by Ferrara, Girardello and Porrati, using the gauging of two translation isometries on SO(4, 1)/SO(4). We demonstrate that no other example of partial breaking of \( \mathcal{N}=2 \) supergravity in Minkowski spacetime exists. We also examine partial-breaking vacua in anti-de Sitter spacetime that are much less constrained and exist generically even for electric gaugings. On SO(4, 1)/SO(4), we construct the partially-broken solution and its global limit which is the Antoniadis-Partouche-Taylor model.

Keywords

Extended Supersymmetry Supergravity Models Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Antoniadis, H. Partouche and T.R. Taylor, Spontaneous breaking of \( \mathcal{N}=2 \) global supersymmetry, Phys. Lett. B 372 (1996) 83 [hep-th/9512006] [INSPIRE].
  2. [2]
    I. Antoniadis, J.-P. Derendinger and C. Markou, Nonlinear \( \mathcal{N}=2 \) global supersymmetry, JHEP 06 (2017) 052 [arXiv:1703.08806] [INSPIRE].
  3. [3]
    U. Lindström and M. Roček, Scalar Tensor Duality and \( \mathcal{N}=1 \) , \( \mathcal{N}=2 \) Nonlinear σ-models, Nucl. Phys. B 222 (1983) 285 [INSPIRE].
  4. [4]
    B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged \( \mathcal{N}=2 \) Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].
  5. [5]
    E. Cremmer et al., Vector Multiplets Coupled to \( \mathcal{N}=2 \) Supergravity: SuperHiggs Effect, Flat Potentials and Geometric Structure, Nucl. Phys. B 250 (1985) 385 [INSPIRE].
  6. [6]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of \( \mathcal{N}=2 \) Supergravity-Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].
  7. [7]
    S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of \( \mathcal{N}=2 \) to \( \mathcal{N}=1 \) in rigid and local supersymmetric theories, Phys. Lett. B 376 (1996) 275 [hep-th/9512180] [INSPIRE].
  8. [8]
    S. Cecotti, L. Girardello and M. Porrati, Two into one won’t go, Phys. Lett. B 145 (1984) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Cecotti, L. Girardello and M. Porrati, Constraints on partial super-Higgs, Nucl. Phys. B 268 (1986) 295 [INSPIRE].
  10. [10]
    S. Ferrara, L. Girardello and M. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in \( \mathcal{N}=2 \) supergravity, Phys. Lett. B 366 (1996) 155 [hep-th/9510074] [INSPIRE].
  11. [11]
    S. Cecotti, L. Girardello and M. Porrati, Some Features of SUSY Breaking in N = 2 Supergravity, Phys. Lett. B 151 (1985) 367 [INSPIRE].
  12. [12]
    S. Cecotti, L. Girardello and M. Porrati, An Exceptional N = 2 Supergravity With Flat Potential and Partial Superhiggs, Phys. Lett. B 168 (1986) 83 [INSPIRE].
  13. [13]
    J. Louis, P. Smyth and H. Triendl, Spontaneous \( \mathcal{N}=2 \) to \( \mathcal{N}=1 \) Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].
  14. [14]
    J. Louis, P. Smyth and H. Triendl, The \( \mathcal{N}=1 \) Low-Energy Effective Action of Spontaneously Broken \( \mathcal{N}=2 \) Supergravities, JHEP 10 (2010) 017 [arXiv:1008.1214] [INSPIRE].
  15. [15]
    S. Ferrara and S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079 [hep-th/0307268] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    N. Ambrosetti, I. Antoniadis, J.-P. Derendinger and P. Tziveloglou, The Hypermultiplet with Heisenberg Isometry in \( \mathcal{N}=2 \) Global and Local Supersymmetry, JHEP 06 (2011) 139 [arXiv:1005.0323] [INSPIRE].
  18. [18]
    I. Antoniadis, J.-P. Derendinger, P.M. Petropoulos and K. Siampos, Heisenberg symmetry and hypermultiplet manifolds, Nucl. Phys. B 905 (2016) 293 [arXiv:1512.06418] [INSPIRE].
  19. [19]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  20. [20]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    D. Cassani, S. Ferrara, A. Marrani, J.F. Morales and H. Samtleben, A Special road to AdS vacua, JHEP 02 (2010) 027 [arXiv:0911.2708] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    D.M.J. Calderbank and H. Pedersen, Selfdual Einstein metrics with torus symmetry, J. Diff. Geom. 60 (2002) 485 [math/0105263] [INSPIRE].
  23. [23]
    B. Craps, F. Roose, W. Troost and A. Van Proeyen, What is special Kähler geometry?, Nucl. Phys. B 503 (1997) 565 [hep-th/9703082] [INSPIRE].
  24. [24]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge (2012).Google Scholar
  25. [25]
    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].
  26. [26]
    S. Ferrara and L. Maiani, An Introduction to supersymmetry breaking in extended supergravity, in 5th SILARG Symposium on Relativity, Supersymmetry and Cosmology, Bariloche, Argentina, January 4-11 1985, CERN-TH-4232/85 [INSPIRE].
  27. [27]
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara and P. Fré’, General matter coupled \( \mathcal{N}=2 \) supergravity, Nucl. Phys. B 476 (1996) 397 [hep-th/9603004] [INSPIRE].
  28. [28]
    L. Andrianopoli et al., \( \mathcal{N}=2 \) supergravity and \( \mathcal{N}=2 \) superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].
  29. [29]
    J. Bagger and E. Witten, Matter Couplings in \( \mathcal{N}=2 \) Supergravity, Nucl. Phys. B 222 (1983) 1 [INSPIRE].
  30. [30]
    M. Przanowski, Killing vector fields in selfdual, Euclidean Einstein spaces with Lambda not equal 0, J. Math. Phys. 32 (1991) 1004 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    P. Tod, The SU(∞)-Toda field equation and special four-dimensional metrics, in Geometry and physics, J.E. Andersen et al. eds., Lecture Notes in Pure and Applied Mathematics 184, Marcel Dekker, Inc., New York (1997) [INSPIRE].
  32. [32]
    D. Joyce, Explicit construction of selfdual 4-manifolds, Duke Math. J. 77 (1995) 519.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    P. Jones and K. Tod, Minitwistor spaces and Einstein-Weyl spaces, Class. Quant. Grav. 2 (1985) 565 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    P. Tod, A Note on Riemannian anti-self-dual Einstein metrics with symmetry, hep-th/0609071 [INSPIRE].
  35. [35]
    R.S. Ward, Einstein-Weyl spaces and SU(∞) Toda fields, Class. Quant. Grav. 7 (1990) L95 [INSPIRE].
  36. [36]
    L. Andrianopoli, P. Concha, R. D’Auria, E. Rodriguez and M. Trigiante, Observations on BI from \( \mathcal{N}=2 \) Supergravity and the General Ward Identity, JHEP 11 (2015) 061 [arXiv:1508.01474] [INSPIRE].
  37. [37]
    I. Antoniadis, J.-P. Derendinger, P.M. Petropoulos and K. Siampos, Isometries, gaugings and \( \mathcal{N}= 2 \) supergravity decoupling, JHEP 11(2016) 169[arXiv:1611.00964] [INSPIRE].
  38. [38]
    S. Alexandrov, S. Banerjee and P. Longhi, Rigid limit for hypermultiplets and five-dimensional gauge theories, JHEP 01 (2018) 156 [arXiv:1710.10665] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et Hautes Energies — LPTHE, Sorbonne Université, CNRSParisFrance
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  3. 3.Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644Palaiseau CedexFrance
  4. 4.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations