Advertisement

The large charge expansion at large N

  • Anton de la Fuente
Open Access
Regular Article - Theoretical Physics
  • 42 Downloads

Abstract

The scaling dimensions of charged operators in conformal field theory have recently been predicted to exhibit universal behavior in the large charge limit. We verify this behavior in the 2+1 dimensional ℂPN − 1 model. Specifically, we numerically compute the scaling dimensions of the lowest dimension monopole operators with charges Q = 1, 2, · · · , 100 to subleading order in large N . The coefficients of the large Q expansion are extracted through a fit, and the predicted universal \( \mathcal{O}\left({Q}^0\right) \) contribution is verified to the subpercent level.

Keywords

1/N Expansion Conformal Field Theory Effective Field Theories Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240 [INSPIRE].
  2. [2]
    K.G. Wilson, Quantum field theory models in less than four-dimensions, Phys. Rev. D 7 (1973) 2911 [INSPIRE].ADSGoogle Scholar
  3. [3]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  4. [4]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1 [INSPIRE].Google Scholar
  8. [8]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  9. [9]
    D.B. Kaplan, M.J. Savage and M.B. Wise, A new expansion for nucleon-nucleon interactions, Phys. Lett. B 424 (1998) 390 [nucl-th/9801034] [INSPIRE].
  10. [10]
    S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT operator spectrum at large global charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP 04 (2017) 059 [arXiv:1610.04495] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    O. Loukas, Abelian scalar theory at large global charge, Fortsch. Phys. 65 (2017) 1700028 [arXiv:1612.08985] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A note on inhomogeneous ground states at large global charge, arXiv:1705.05825 [INSPIRE].
  15. [15]
    S. Hellerman, S. Maeda and M. Watanabe, Operator dimensions from moduli, JHEP 10 (2017) 089 [arXiv:1706.05743] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett. 120 (2018) 061603 [arXiv:1707.00711] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    O. Loukas, D. Orlando and S. Reffert, Matrix models at large charge, JHEP 10 (2017) 085 [arXiv:1707.00710] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Hellerman and S. Maeda, On the large R-charge expansion in N = 2 superconformal field theories, JHEP 12 (2017) 135 [arXiv:1710.07336] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal bootstrap at large charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Cuomo, A. de la Fuente, A. Monin, D. Pirtskhalava and R. Rattazzi, Rotating superfluids and spinning charged operators in conformal field theory, Phys. Rev. D 97 (2018) 045012 [arXiv:1711.02108] [INSPIRE].ADSGoogle Scholar
  21. [21]
    O. Loukas, A matrix CFT at multiple large charges, JHEP 06 (2018) 164 [arXiv:1711.07990] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Hellerman, S. Maeda, D. Orlando, S. Reffert and M. Watanabe, Universal correlation functions in rank 1 SCFTs, arXiv:1804.01535 [INSPIRE].
  23. [23]
    O. Loukas, D. Orlando, S. Reffert and D. Sarkar, An AdS/EFT correspondence at large charge, arXiv:1804.04151 [INSPIRE].
  24. [24]
    S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, Observables in inhomogeneous ground states at large global charge, arXiv:1804.06495 [INSPIRE].
  25. [25]
    A. Monin, Partition function on spheres: how to use zeta function regularization, Phys. Rev. D 94 (2016) 085013 [arXiv:1607.06493] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Coleman, Aspects of symmetry: selected Erice lectures, Cambridge University Press, Cambridge, U.K., (1988) [INSPIRE].zbMATHGoogle Scholar
  28. [28]
    M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: a review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    G. Murthy and S. Sachdev, Action of hedgehog instantons in the disordered phase of the (2 + 1)-dimensional CP N −1 model, Nucl. Phys. B 344 (1990) 557 [INSPIRE].
  30. [30]
    M.A. Metlitski, M. Hermele, T. Senthil and M.P.A. Fisher, Monopoles in CP N −1 model via the state-operator correspondence, Phys. Rev. B 78 (2008) 214418 [arXiv:0809.2816] [INSPIRE].
  31. [31]
    E. Dyer, M. Mezei, S.S. Pufu and S. Sachdev, Scaling dimensions of monopole operators in the \( C{P}^{N_b-1} \) theory in 2 + 1 dimensions, JHEP 06 (2015) 037 [Erratum ibid. 03 (2016) 111] [arXiv:1504.00368] [INSPIRE].
  32. [32]
    V. Borokhov, A. Kapustin and X.-K. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    R.K. Kaul and S. Sachdev, Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions, Phys. Rev. B 77 (2008) 155105 [arXiv:0801.0723] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Dyer, M. Mezei and S.S. Pufu, Monopole taxonomy in three-dimensional conformal field theories, arXiv:1309.1160 [INSPIRE].
  36. [36]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Particle Physics Laboratory, Institute of Physics, EPFLLausanneSwitzerland

Personalised recommendations